concurrency_in_python/single_process_vs_multi_pro.../main.py

71 lines
1.8 KiB
Python
Raw Normal View History

from multiprocessing import Process
from random import randint
from time import time
# This example compare the speed of CPU-bound operations
# when using a sequential method and also when using a
# multi-process method with the 'multiprocessing' Python
# package
def calculatePrimeFactors(n):
primfac = []
d = 2
while d*d <= n:
while (n % d) == 0:
primfac.append(d) # supposing you want multiple factors repeated
n //= d
d += 1
if n > 1:
primfac.append(n)
return primfac
# Sequential Example
def seq_crunch():
print("Starting sequential number crunching")
t0 = time()
for i in range(10000):
rand = randint(20000, 100000000)
calculatePrimeFactors(rand)
t1 = time()
return f'{t1-t0:.2f}'
# Multi-processing Example
def executeProc():
for i in range(1000):
rand = randint(20000, 100000000)
calculatePrimeFactors(rand)
def multi_proc_crunch():
print("Starting multi-process number crunching")
t0 = time()
processes = []
# Here we create our processes and kick them off
for i in range(10):
proc = Process(target=executeProc, args=())
processes.append(proc)
proc.start()
# Again we use the .join() method in order to wait for
# execution to finish for all of our processes
for process in processes:
process.join()
t1 = time()
return f'{t1-t0:.2f}'
if __name__ == '__main__':
seq_time = seq_crunch()
multi_proc_time = multi_proc_crunch()
print('\n==================================')
print(f'Time to crunch prime factors sequentially: {seq_time}s')
print(f'Time to crunch prime factors using multi-processing: {multi_proc_time}s')
print('==================================')