cpal/src/alsa/mod.rs

617 lines
23 KiB
Rust

extern crate alsa_sys as alsa;
extern crate libc;
pub use self::enumerate::{EndpointsIterator, get_default_endpoint};
use ChannelPosition;
use CreationError;
use Format;
use FormatsEnumerationError;
use SampleFormat;
use SamplesRate;
use UnknownTypeBuffer;
use std::{ffi, cmp, iter, mem, ptr};
use std::vec::IntoIter as VecIntoIter;
use std::sync::{Arc, Mutex};
use futures::Poll;
use futures::task::Task;
use futures::task;
use futures::stream::Stream;
use futures::Async;
pub type SupportedFormatsIterator = VecIntoIter<Format>;
mod enumerate;
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Endpoint(String);
impl Endpoint {
pub fn get_supported_formats_list(&self)
-> Result<SupportedFormatsIterator, FormatsEnumerationError>
{
unsafe {
let mut playback_handle = mem::uninitialized();
let device_name = ffi::CString::new(self.0.clone()).expect("Unable to get device name");
match alsa::snd_pcm_open(&mut playback_handle, device_name.as_ptr() as *const _,
alsa::SND_PCM_STREAM_PLAYBACK, alsa::SND_PCM_NONBLOCK)
{
-2 |
-16 /* determined empirically */ => return Err(FormatsEnumerationError::DeviceNotAvailable),
e => check_errors(e).expect("device not available")
}
let hw_params = HwParams::alloc();
match check_errors(alsa::snd_pcm_hw_params_any(playback_handle, hw_params.0)) {
Err(_) => return Ok(Vec::new().into_iter()),
Ok(_) => ()
};
// TODO: check endianess
const FORMATS: [(SampleFormat, alsa::snd_pcm_format_t); 3] = [
//SND_PCM_FORMAT_S8,
//SND_PCM_FORMAT_U8,
(SampleFormat::I16, alsa::SND_PCM_FORMAT_S16_LE),
//SND_PCM_FORMAT_S16_BE,
(SampleFormat::U16, alsa::SND_PCM_FORMAT_U16_LE),
//SND_PCM_FORMAT_U16_BE,
/*SND_PCM_FORMAT_S24_LE,
SND_PCM_FORMAT_S24_BE,
SND_PCM_FORMAT_U24_LE,
SND_PCM_FORMAT_U24_BE,
SND_PCM_FORMAT_S32_LE,
SND_PCM_FORMAT_S32_BE,
SND_PCM_FORMAT_U32_LE,
SND_PCM_FORMAT_U32_BE,*/
(SampleFormat::F32, alsa::SND_PCM_FORMAT_FLOAT_LE),
/*SND_PCM_FORMAT_FLOAT_BE,
SND_PCM_FORMAT_FLOAT64_LE,
SND_PCM_FORMAT_FLOAT64_BE,
SND_PCM_FORMAT_IEC958_SUBFRAME_LE,
SND_PCM_FORMAT_IEC958_SUBFRAME_BE,
SND_PCM_FORMAT_MU_LAW,
SND_PCM_FORMAT_A_LAW,
SND_PCM_FORMAT_IMA_ADPCM,
SND_PCM_FORMAT_MPEG,
SND_PCM_FORMAT_GSM,
SND_PCM_FORMAT_SPECIAL,
SND_PCM_FORMAT_S24_3LE,
SND_PCM_FORMAT_S24_3BE,
SND_PCM_FORMAT_U24_3LE,
SND_PCM_FORMAT_U24_3BE,
SND_PCM_FORMAT_S20_3LE,
SND_PCM_FORMAT_S20_3BE,
SND_PCM_FORMAT_U20_3LE,
SND_PCM_FORMAT_U20_3BE,
SND_PCM_FORMAT_S18_3LE,
SND_PCM_FORMAT_S18_3BE,
SND_PCM_FORMAT_U18_3LE,
SND_PCM_FORMAT_U18_3BE,*/
];
let mut supported_formats = Vec::new();
for &(sample_format, alsa_format) in FORMATS.iter() {
if alsa::snd_pcm_hw_params_test_format(playback_handle, hw_params.0, alsa_format) == 0 {
supported_formats.push(sample_format);
}
}
let mut min_rate = mem::uninitialized();
check_errors(alsa::snd_pcm_hw_params_get_rate_min(hw_params.0, &mut min_rate, ptr::null_mut())).expect("unable to get minimum supported rete");
let mut max_rate = mem::uninitialized();
check_errors(alsa::snd_pcm_hw_params_get_rate_max(hw_params.0, &mut max_rate, ptr::null_mut())).expect("unable to get maximum supported rate");
let samples_rates = if min_rate == max_rate {
vec![min_rate]
/*} else if alsa::snd_pcm_hw_params_test_rate(playback_handle, hw_params.0, min_rate + 1, 0) == 0 {
(min_rate .. max_rate + 1).collect()*/ // TODO: code is correct but returns lots of stuff
} else {
const RATES: [libc::c_uint; 13] = [
5512,
8000,
11025,
16000,
22050,
32000,
44100,
48000,
64000,
88200,
96000,
176400,
192000,
];
let mut rates = Vec::new();
for &rate in RATES.iter() {
if alsa::snd_pcm_hw_params_test_rate(playback_handle, hw_params.0, rate, 0) == 0 {
rates.push(rate);
}
}
/*if rates.len() == 0 {
(min_rate .. max_rate + 1).collect()
} else {*/
rates // TODO: code is correct but returns lots of stuff
//}
};
let mut min_channels = mem::uninitialized();
check_errors(alsa::snd_pcm_hw_params_get_channels_min(hw_params.0, &mut min_channels)).expect("unable to get minimum supported channel count");
let mut max_channels = mem::uninitialized();
check_errors(alsa::snd_pcm_hw_params_get_channels_max(hw_params.0, &mut max_channels)).expect("unable to get maximum supported channel count");
let max_channels = cmp::min(max_channels, 32); // TODO: limiting to 32 channels or too much stuff is returned
let supported_channels = (min_channels .. max_channels + 1).filter_map(|num| {
if alsa::snd_pcm_hw_params_test_channels(playback_handle, hw_params.0, num) == 0 {
Some([ChannelPosition::FrontLeft, ChannelPosition::FrontRight,
ChannelPosition::BackLeft, ChannelPosition::BackRight,
ChannelPosition::FrontCenter, ChannelPosition::LowFrequency]
.iter().take(num as usize).cloned().collect::<Vec<_>>())
} else {
None
}
}).collect::<Vec<_>>();
let mut output = Vec::with_capacity(supported_formats.len() * supported_channels.len() *
samples_rates.len());
for &data_type in supported_formats.iter() {
for channels in supported_channels.iter() {
for &rate in samples_rates.iter() {
output.push(Format {
channels: channels.clone(),
samples_rate: SamplesRate(rate as u32),
data_type: data_type,
});
}
}
}
// TODO: RAII
alsa::snd_pcm_close(playback_handle);
Ok(output.into_iter())
}
}
#[inline]
pub fn get_name(&self) -> String {
self.0.clone()
}
}
pub struct EventLoop {
inner: Arc<EventLoopInner>,
}
struct EventLoopInner {
// Descriptors that we are currently waiting upon. This member is always locked while `run()`
// is executed, ie. most of the time.
//
// Note that for `current_wait`, the first element of `descriptors` is always
// `pending_wait_signal`. Therefore the length of `descriptors` is always one more than
// `voices`.
current_wait: Mutex<PollDescriptors>,
// Since we can't add elements to `current_wait` (as it's locked), we add them to
// `pending_wait`. Once that's done, we signal `pending_wait_signal` so that the `run()`
// function can pause and add the content of `pending_wait` to `current_wait`.
pending_wait: Mutex<PollDescriptors>,
// A file descriptor opened with `eventfd`. Always the first element
// of `current_wait.descriptors`. Should be notified when an element is added
// to `pending_wait` so that the current wait can stop and take the pending wait into
// account.
pending_wait_signal: libc::c_int,
}
struct PollDescriptors {
// Descriptors to wait for.
descriptors: Vec<libc::pollfd>,
// List of voices that are written in `descriptors`.
voices: Vec<Arc<VoiceInner>>,
}
unsafe impl Send for EventLoopInner {}
unsafe impl Sync for EventLoopInner {}
impl Drop for EventLoopInner {
fn drop(&mut self) {
unsafe {
libc::close(self.pending_wait_signal);
}
}
}
impl EventLoop {
#[inline]
pub fn new() -> EventLoop {
let pending_wait_signal = unsafe { libc::eventfd(0, 0) };
EventLoop {
inner: Arc::new(EventLoopInner {
current_wait: Mutex::new(PollDescriptors {
descriptors: vec![libc::pollfd {
fd: pending_wait_signal,
events: libc::POLLIN,
revents: 0,
}],
voices: Vec::new(),
}),
pending_wait: Mutex::new(PollDescriptors {
descriptors: Vec::new(),
voices: Vec::new(),
}),
pending_wait_signal: pending_wait_signal,
})
}
}
#[inline]
pub fn run(&self) {
unsafe {
let mut current_wait = self.inner.current_wait.lock().unwrap();
loop {
let ret = libc::poll(current_wait.descriptors.as_mut_ptr(),
current_wait.descriptors.len() as libc::nfds_t,
-1 /* infinite */);
assert!(ret >= 0, "poll() failed");
if ret == 0 {
continue;
}
// If the `pending_wait_signal` was signaled, add the pending waits to
// the current waits.
if current_wait.descriptors[0].revents != 0 {
current_wait.descriptors[0].revents = 0;
let mut pending = self.inner.pending_wait.lock().unwrap();
current_wait.descriptors.append(&mut pending.descriptors);
current_wait.voices.append(&mut pending.voices);
// Emptying the signal.
let mut out = 0u64;
let ret = libc::read(self.inner.pending_wait_signal,
&mut out as *mut u64 as *mut _, 8);
assert_eq!(ret, 8);
}
// Check each individual descriptor for events.
let mut i_voice = 0;
let mut i_descriptor = 1;
while i_voice < current_wait.voices.len() {
let mut revent = mem::uninitialized();
{
let channel = *current_wait.voices[i_voice].channel.lock().unwrap();
let num_descriptors = current_wait.voices[i_voice].num_descriptors as libc::c_uint;
check_errors(alsa::snd_pcm_poll_descriptors_revents(channel, current_wait.descriptors
.as_mut_ptr().offset(i_descriptor),
num_descriptors, &mut revent)).unwrap();
}
if (revent as libc::c_short & libc::POLLOUT) != 0 {
let scheduled = current_wait.voices[i_voice].scheduled.lock().unwrap().take();
if let Some(scheduled) = scheduled {
scheduled.unpark();
}
for _ in 0 .. current_wait.voices[i_voice].num_descriptors {
current_wait.descriptors.remove(i_descriptor as usize);
}
current_wait.voices.remove(i_voice);
} else {
i_descriptor += current_wait.voices[i_voice].num_descriptors as isize;
i_voice += 1;
}
}
}
}
}
}
pub struct Voice;
pub struct Buffer<T> {
inner: Arc<VoiceInner>,
buffer: Vec<T>,
}
pub struct SamplesStream {
inner: Arc<VoiceInner>,
}
struct VoiceInner {
// The event loop used to create the voice.
event_loop: Arc<EventLoopInner>,
// The ALSA channel.
channel: Mutex<*mut alsa::snd_pcm_t>,
// When converting between file descriptors and `snd_pcm_t`, this is the number of
// file descriptors that this `snd_pcm_t` uses.
num_descriptors: usize,
// Format of the samples.
sample_format: SampleFormat,
// Number of channels, ie. number of samples per frame.
num_channels: u16,
// Number of samples that can fit in the buffer.
buffer_len: usize,
// Minimum number of samples to put in the buffer.
period_len: usize,
// If `Some`, something previously called `schedule` on the stream.
scheduled: Mutex<Option<Task>>,
}
unsafe impl Send for VoiceInner {}
unsafe impl Sync for VoiceInner {}
impl SamplesStream {
#[inline]
fn schedule(&mut self) {
unsafe {
let channel = self.inner.channel.lock().unwrap();
// We start by filling `scheduled`.
*self.inner.scheduled.lock().unwrap() = Some(task::park());
// In this function we turn the `snd_pcm_t` into a collection of file descriptors.
// And we add these descriptors to `event_loop.pending_wait.descriptors`.
let mut pending_wait = self.inner.event_loop.pending_wait.lock().unwrap();
pending_wait.descriptors.reserve(self.inner.num_descriptors);
let len = pending_wait.descriptors.len();
let filled = alsa::snd_pcm_poll_descriptors(*channel,
pending_wait.descriptors.as_mut_ptr()
.offset(len as isize),
self.inner.num_descriptors as libc::c_uint);
debug_assert_eq!(filled, self.inner.num_descriptors as libc::c_int);
pending_wait.descriptors.set_len(len + self.inner.num_descriptors);
// We also fill `voices`.
pending_wait.voices.push(self.inner.clone());
// Now that `pending_wait` received additional descriptors, we signal the event
// so that our event loops can pick it up.
drop(pending_wait);
let buf = 1u64;
let wret = libc::write(self.inner.event_loop.pending_wait_signal,
&buf as *const u64 as *const _, 8);
assert!(wret == 8);
}
}
}
impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
fn poll(&mut self) -> Poll<Option<Self::Item>, Self::Error> {
// Determine the number of samples that are available to write.
let available = {
let channel = self.inner.channel.lock().expect("could not lock channel");
let available = unsafe { alsa::snd_pcm_avail(*channel) }; // TODO: what about snd_pcm_avail_update?
if available == -32 {
// buffer underrun
self.inner.buffer_len
} else if available < 0 {
check_errors(available as libc::c_int).expect("buffer is not available");
unreachable!()
} else {
(available * self.inner.num_channels as alsa::snd_pcm_sframes_t) as usize
}
};
// If we don't have one period ready, return `NotReady`.
if available < self.inner.period_len {
self.schedule();
return Ok(Async::NotReady);
}
// We now sure that we're ready to write data.
match self.inner.sample_format {
SampleFormat::I16 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Ok(Async::Ready((Some(UnknownTypeBuffer::I16(::Buffer { target: Some(buffer) })))))
},
SampleFormat::U16 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Ok(Async::Ready((Some(UnknownTypeBuffer::U16(::Buffer { target: Some(buffer) })))))
},
SampleFormat::F32 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Ok(Async::Ready((Some(UnknownTypeBuffer::F32(::Buffer { target: Some(buffer) })))))
},
}
}
}
/// Wrapper around `hw_params`.
struct HwParams(*mut alsa::snd_pcm_hw_params_t);
impl HwParams {
pub fn alloc() -> HwParams {
unsafe {
let mut hw_params = mem::uninitialized();
check_errors(alsa::snd_pcm_hw_params_malloc(&mut hw_params)).expect("unable to get hardware parameters");
HwParams(hw_params)
}
}
}
impl Drop for HwParams {
fn drop(&mut self) {
unsafe {
alsa::snd_pcm_hw_params_free(self.0);
}
}
}
impl Voice {
pub fn new(endpoint: &Endpoint, format: &Format, event_loop: &EventLoop)
-> Result<(Voice, SamplesStream), CreationError>
{
unsafe {
let name = ffi::CString::new(endpoint.0.clone()).expect("unable to clone endpoint");
let mut playback_handle = mem::uninitialized();
match alsa::snd_pcm_open(&mut playback_handle, name.as_ptr(),
alsa::SND_PCM_STREAM_PLAYBACK, 0)
{
-16 /* determined empirically */ => return Err(CreationError::DeviceNotAvailable),
e => check_errors(e).expect("Device unavailable")
}
// TODO: check endianess
let data_type = match format.data_type {
SampleFormat::I16 => alsa::SND_PCM_FORMAT_S16_LE,
SampleFormat::U16 => alsa::SND_PCM_FORMAT_U16_LE,
SampleFormat::F32 => alsa::SND_PCM_FORMAT_FLOAT_LE,
};
let hw_params = HwParams::alloc();
check_errors(alsa::snd_pcm_hw_params_any(playback_handle, hw_params.0)).expect("Errors on playback handle");
check_errors(alsa::snd_pcm_hw_params_set_access(playback_handle, hw_params.0, alsa::SND_PCM_ACCESS_RW_INTERLEAVED)).expect("handle not acessible");
check_errors(alsa::snd_pcm_hw_params_set_format(playback_handle, hw_params.0, data_type)).expect("format could not be set");
check_errors(alsa::snd_pcm_hw_params_set_rate(playback_handle, hw_params.0, format.samples_rate.0 as libc::c_uint, 0)).expect("sample rate could not be set");
check_errors(alsa::snd_pcm_hw_params_set_channels(playback_handle, hw_params.0, format.channels.len() as libc::c_uint)).expect("channel count could not be set");
let mut max_buffer_size = format.samples_rate.0 as alsa::snd_pcm_uframes_t / format.channels.len() as alsa::snd_pcm_uframes_t / 5; // 200ms of buffer
check_errors(alsa::snd_pcm_hw_params_set_buffer_size_max(playback_handle, hw_params.0, &mut max_buffer_size)).unwrap();
check_errors(alsa::snd_pcm_hw_params(playback_handle, hw_params.0)).expect("hardware params could not be set");
let mut sw_params = mem::uninitialized(); // TODO: RAII
check_errors(alsa::snd_pcm_sw_params_malloc(&mut sw_params)).unwrap();
check_errors(alsa::snd_pcm_sw_params_current(playback_handle, sw_params)).unwrap();
check_errors(alsa::snd_pcm_sw_params_set_avail_min(playback_handle, sw_params, 4096)).unwrap();
check_errors(alsa::snd_pcm_sw_params_set_start_threshold(playback_handle, sw_params, 0)).unwrap();
check_errors(alsa::snd_pcm_sw_params(playback_handle, sw_params)).unwrap();
check_errors(alsa::snd_pcm_prepare(playback_handle)).expect("could not get playback handle");
let (buffer_len, period_len) = {
let mut buffer = mem::uninitialized();
let mut period = mem::uninitialized();
check_errors(alsa::snd_pcm_get_params(playback_handle, &mut buffer, &mut period)).expect("could not initialize buffer");
assert!(buffer != 0);
let buffer = buffer as usize * format.channels.len();
let period = period as usize * format.channels.len();
(buffer, period)
};
let num_descriptors = {
let num_descriptors = alsa::snd_pcm_poll_descriptors_count(playback_handle);
debug_assert!(num_descriptors >= 1);
num_descriptors as usize
};
let samples_stream_inner = Arc::new(VoiceInner {
event_loop: event_loop.inner.clone(),
channel: Mutex::new(playback_handle),
sample_format: format.data_type,
num_descriptors: num_descriptors,
num_channels: format.channels.len() as u16,
buffer_len: buffer_len,
period_len: period_len,
scheduled: Mutex::new(None),
});
Ok((Voice, SamplesStream {
inner: samples_stream_inner
}))
}
}
#[inline]
pub fn play(&mut self) {
// already playing
//unimplemented!()
}
#[inline]
pub fn pause(&mut self) {
unimplemented!()
}
}
impl Drop for VoiceInner {
#[inline]
fn drop(&mut self) {
unsafe {
alsa::snd_pcm_close(*self.channel.lock().expect("drop for voice"));
}
}
}
impl<T> Buffer<T> {
#[inline]
pub fn get_buffer(&mut self) -> &mut [T] {
&mut self.buffer
}
#[inline]
pub fn len(&self) -> usize {
self.buffer.len()
}
pub fn finish(self) {
let to_write = (self.buffer.len() / self.inner.num_channels as usize)
as alsa::snd_pcm_uframes_t;
let channel = self.inner.channel.lock().expect("Buffer channel lock failed");
unsafe {
loop {
let result = alsa::snd_pcm_writei(*channel,
self.buffer.as_ptr() as *const _,
to_write);
if result == -32 {
// buffer underrun
alsa::snd_pcm_prepare(*channel);
} else if result < 0 {
check_errors(result as libc::c_int).expect("could not write pcm");
} else {
assert_eq!(result as alsa::snd_pcm_uframes_t, to_write);
break;
}
}
}
}
}
#[inline]
fn check_errors(err: libc::c_int) -> Result<(), String> {
use std::ffi;
if err < 0 {
unsafe {
let s = ffi::CStr::from_ptr(alsa::snd_strerror(err)).to_bytes().to_vec();
let s = String::from_utf8(s).expect("Streaming error occured");
return Err(s);
}
}
Ok(())
}