mitchmindtree ca2aceb536 Fix state transition synchronisation in ASIO
This makes some tweaks to the ASIO backend in order to fix some cases
where races may have occured. This should allow us to remove the `Sync`
bound on the `Device` and `Host` types.
2020-01-12 22:40:05 +01:00

938 lines
32 KiB
Rust

pub mod asio_import;
#[macro_use]
pub mod errors;
use num_traits::FromPrimitive;
use self::errors::{AsioError, AsioErrorWrapper, LoadDriverError};
use std::ffi::CStr;
use std::ffi::CString;
use std::os::raw::{c_char, c_double, c_long, c_void};
use std::sync::{Arc, Mutex, MutexGuard, Weak};
// Bindings import
use self::asio_import as ai;
/// A handle to the ASIO API.
///
/// There should only be one instance of this type at any point in time.
#[derive(Debug)]
pub struct Asio {
// Keeps track of whether or not a driver is already loaded.
//
// This is necessary as ASIO only supports one `Driver` at a time.
loaded_driver: Mutex<Weak<DriverInner>>,
}
/// A handle to a single ASIO driver.
///
/// Creating an instance of this type loads and initialises the driver.
///
/// Dropping all `Driver` instances will automatically dispose of any resources and de-initialise
/// the driver.
#[derive(Clone, Debug)]
pub struct Driver {
inner: Arc<DriverInner>,
}
// Contains the state associated with a `Driver`.
//
// This state may be shared between multiple `Driver` handles representing the same underlying
// driver. Only when the last `Driver` is dropped will the `Drop` implementation for this type run
// and the necessary driver resources will be de-allocated and unloaded.
//
// The same could be achieved by returning an `Arc<Driver>` from the `Host::load_driver` API,
// however the `DriverInner` abstraction is required in order to allow for the `Driver::destroy`
// method to exist safely. By wrapping the `Arc<DriverInner>` in the `Driver` type, we can make
// sure the user doesn't `try_unwrap` the `Arc` and invalidate the `Asio` instance's weak pointer.
// This would allow for instantiation of a separate driver before the existing one is destroyed,
// which is disallowed by ASIO.
#[derive(Debug)]
struct DriverInner {
state: Mutex<DriverState>,
// The unique name associated with this driver.
name: String,
// Track whether or not the driver has been destroyed.
//
// This allows for the user to manually destroy the driver and handle any errors if they wish.
//
// In the case that the driver has been manually destroyed this flag will be set to `true`
// indicating to the `drop` implementation that there is nothing to be done.
destroyed: bool,
}
/// All possible states of an ASIO `Driver` instance.
///
/// Mapped to the finite state machine in the ASIO SDK docs.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub enum DriverState {
Initialized,
Prepared,
Running,
}
/// Amount of input and output
/// channels available.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct Channels {
pub ins: c_long,
pub outs: c_long,
}
/// Sample rate of the ASIO driver.
#[derive(Clone, Copy, Debug, Eq, Hash, PartialEq)]
pub struct SampleRate {
pub rate: u32,
}
/// Holds the pointer to the callbacks that come from cpal
struct BufferCallback(Box<dyn FnMut(i32) + Send>);
/// Input and Output streams.
///
/// There is only ever max one input and one output.
///
/// Only one is required.
pub struct AsioStreams {
pub input: Option<AsioStream>,
pub output: Option<AsioStream>,
}
/// A stream to ASIO.
///
/// Contains the buffers.
pub struct AsioStream {
/// A Double buffer per channel
pub buffer_infos: Vec<AsioBufferInfo>,
/// Size of each buffer
pub buffer_size: i32,
}
/// All the possible types from ASIO.
/// This is a direct copy of the ASIOSampleType
/// inside ASIO SDK.
#[derive(Debug, FromPrimitive)]
#[repr(C)]
pub enum AsioSampleType {
ASIOSTInt16MSB = 0,
ASIOSTInt24MSB = 1, // used for 20 bits as well
ASIOSTInt32MSB = 2,
ASIOSTFloat32MSB = 3, // IEEE 754 32 bit float
ASIOSTFloat64MSB = 4, // IEEE 754 64 bit double float
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can be more easily used with these
ASIOSTInt32MSB16 = 8, // 32 bit data with 16 bit alignment
ASIOSTInt32MSB18 = 9, // 32 bit data with 18 bit alignment
ASIOSTInt32MSB20 = 10, // 32 bit data with 20 bit alignment
ASIOSTInt32MSB24 = 11, // 32 bit data with 24 bit alignment
ASIOSTInt16LSB = 16,
ASIOSTInt24LSB = 17, // used for 20 bits as well
ASIOSTInt32LSB = 18,
ASIOSTFloat32LSB = 19, // IEEE 754 32 bit float, as found on Intel x86 architecture
ASIOSTFloat64LSB = 20, // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
ASIOSTInt32LSB16 = 24, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB18 = 25, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB20 = 26, // 32 bit data with 20 bit alignment
ASIOSTInt32LSB24 = 27, // 32 bit data with 24 bit alignment
// ASIO DSD format.
ASIOSTDSDInt8LSB1 = 32, // DSD 1 bit data, 8 samples per byte. First sample in Least significant bit.
ASIOSTDSDInt8MSB1 = 33, // DSD 1 bit data, 8 samples per byte. First sample in Most significant bit.
ASIOSTDSDInt8NER8 = 40, // DSD 8 bit data, 1 sample per byte. No Endianness required.
ASIOSTLastEntry,
}
/// Gives information about buffers
/// Receives pointers to buffers
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct AsioBufferInfo {
/// 0 for output 1 for input
pub is_input: c_long,
/// Which channel. Starts at 0
pub channel_num: c_long,
/// Pointer to each half of the double buffer.
pub buffers: [*mut c_void; 2],
}
/// Callbacks that ASIO calls
#[repr(C)]
struct AsioCallbacks {
buffer_switch: extern "C" fn(double_buffer_index: c_long, direct_process: c_long) -> (),
sample_rate_did_change: extern "C" fn(s_rate: c_double) -> (),
asio_message:
extern "C" fn(selector: c_long, value: c_long, message: *mut (), opt: *mut c_double)
-> c_long,
buffer_switch_time_info: extern "C" fn(
params: *mut ai::ASIOTime,
double_buffer_index: c_long,
direct_process: c_long,
) -> *mut ai::ASIOTime,
}
/// A rust-usable version of the `ASIOTime` type that does not contain a binary blob for fields.
#[repr(C)]
pub struct AsioTime {
/// Must be `0`.
pub reserved: [c_long; 4],
/// Required.
pub time_info: AsioTimeInfo,
/// Optional, evaluated if (time_code.flags & ktcValid).
pub time_code: AsioTimeCode,
}
/// A rust-compatible version of the `ASIOTimeInfo` type that does not contain a binary blob for
/// fields.
#[repr(C)]
pub struct AsioTimeInfo {
/// Absolute speed (1. = nominal).
pub speed: c_double,
/// System time related to sample_position, in nanoseconds.
///
/// On Windows, must be derived from timeGetTime().
pub system_time: ai::ASIOTimeStamp,
/// Sample position since `ASIOStart()`.
pub sample_position: ai::ASIOSamples,
/// Current rate, unsigned.
pub sample_rate: AsioSampleRate,
/// See `AsioTimeInfoFlags`.
pub flags: c_long,
/// Must be `0`.
pub reserved: [c_char; 12],
}
/// A rust-compatible version of the `ASIOTimeCode` type that does not use a binary blob for its
/// fields.
#[repr(C)]
pub struct AsioTimeCode {
/// Speed relation (fraction of nominal speed) optional.
///
/// Set to 0. or 1. if not supported.
pub speed: c_double,
/// Time in samples unsigned.
pub time_code_samples: ai::ASIOSamples,
/// See `ASIOTimeCodeFlags`.
pub flags: c_long,
/// Set to `0`.
pub future: [c_char; 64],
}
/// A rust-compatible version of the `ASIOSampleRate` type that does not use a binary blob for its
/// fields.
pub type AsioSampleRate = f64;
// A helper type to simplify retrieval of available buffer sizes.
#[derive(Default)]
struct BufferSizes {
min: c_long,
max: c_long,
pref: c_long,
grans: c_long,
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct CallbackId(usize);
lazy_static! {
/// A global way to access all the callbacks.
///
/// This is required because of how ASIO calls the `buffer_switch` function with no data
/// parameters.
///
/// Options are used so that when a callback is removed we don't change the Vec indices.
///
/// The indices are how we match a callback with a stream.
static ref BUFFER_CALLBACK: Mutex<Vec<(CallbackId, BufferCallback)>> = Mutex::new(Vec::new());
}
impl Asio {
/// Initialise the ASIO API.
pub fn new() -> Self {
let loaded_driver = Mutex::new(Weak::new());
Asio { loaded_driver }
}
/// Returns the name for each available driver.
///
/// This is used at the start to allow the user to choose which driver they want.
pub fn driver_names(&self) -> Vec<String> {
// The most drivers we can take
const MAX_DRIVERS: usize = 100;
// Max length for divers name
const MAX_DRIVER_NAME_LEN: usize = 32;
// 2D array of driver names set to 0.
let mut driver_names: [[c_char; MAX_DRIVER_NAME_LEN]; MAX_DRIVERS] =
[[0; MAX_DRIVER_NAME_LEN]; MAX_DRIVERS];
// Pointer to each driver name.
let mut driver_name_ptrs: [*mut i8; MAX_DRIVERS] = [0 as *mut i8; MAX_DRIVERS];
for (ptr, name) in driver_name_ptrs.iter_mut().zip(&mut driver_names[..]) {
*ptr = (*name).as_mut_ptr();
}
unsafe {
let num_drivers = ai::get_driver_names(driver_name_ptrs.as_mut_ptr(), MAX_DRIVERS as i32);
(0 .. num_drivers)
.map(|i| driver_name_to_utf8(&driver_names[i as usize]).to_string())
.collect()
}
}
/// If a driver has already been loaded, this will return that driver.
///
/// Returns `None` if no driver is currently loaded.
///
/// This can be useful to check before calling `load_driver` as ASIO only supports loading a
/// single driver at a time.
pub fn loaded_driver(&self) -> Option<Driver> {
self.loaded_driver
.lock()
.expect("failed to acquire loaded driver lock")
.upgrade()
.map(|inner| Driver { inner })
}
/// Load a driver from the given name.
///
/// Driver names compatible with this method can be produced via the `asio.driver_names()`
/// method.
///
/// NOTE: Despite many requests from users, ASIO only supports loading a single driver at a
/// time. Calling this method while a previously loaded `Driver` instance exists will result in
/// an error. That said, if this method is called with the name of a driver that has already
/// been loaded, that driver will be returned successfully.
pub fn load_driver(&self, driver_name: &str) -> Result<Driver, LoadDriverError> {
// Check whether or not a driver is already loaded.
if let Some(driver) = self.loaded_driver() {
if driver.name() == driver_name {
return Ok(driver);
} else {
return Err(LoadDriverError::DriverAlreadyExists);
}
}
// Make owned CString to send to load driver
let driver_name_cstring = CString::new(driver_name)
.expect("failed to create `CString` from driver name");
let mut driver_info = ai::ASIODriverInfo {
_bindgen_opaque_blob: [0u32; 43],
};
unsafe {
// TODO: Check that a driver of the same name does not already exist?
match ai::load_asio_driver(driver_name_cstring.as_ptr() as *mut i8) {
false => Err(LoadDriverError::LoadDriverFailed),
true => {
// Initialize ASIO.
asio_result!(ai::ASIOInit(&mut driver_info))?;
let state = Mutex::new(DriverState::Initialized);
let name = driver_name.to_string();
let destroyed = false;
let inner = Arc::new(DriverInner { name, state, destroyed });
*self.loaded_driver.lock().expect("failed to acquire loaded driver lock") =
Arc::downgrade(&inner);
let driver = Driver { inner };
Ok(driver)
}
}
}
}
}
impl BufferCallback {
/// Calls the inner callback.
fn run(&mut self, index: i32) {
let cb = &mut self.0;
cb(index);
}
}
impl Driver {
/// The name used to uniquely identify this driver.
pub fn name(&self) -> &str {
&self.inner.name
}
/// Returns the number of input and output channels available on the driver.
pub fn channels(&self) -> Result<Channels, AsioError> {
let mut ins: c_long = 0;
let mut outs: c_long = 0;
unsafe {
asio_result!(ai::ASIOGetChannels(&mut ins, &mut outs))?;
}
let channel = Channels { ins, outs };
Ok(channel)
}
/// Get current sample rate of the driver.
pub fn sample_rate(&self) -> Result<c_double, AsioError> {
let mut rate: c_double = 0.0;
unsafe {
asio_result!(ai::get_sample_rate(&mut rate))?;
}
Ok(rate)
}
/// Can the driver accept the given sample rate.
pub fn can_sample_rate(&self, sample_rate: c_double) -> Result<bool, AsioError> {
unsafe {
match asio_result!(ai::can_sample_rate(sample_rate)) {
Ok(()) => Ok(true),
Err(AsioError::NoRate) => Ok(false),
Err(err) => Err(err),
}
}
}
/// Set the sample rate for the driver.
pub fn set_sample_rate(&self, sample_rate: c_double) -> Result<(), AsioError> {
unsafe {
asio_result!(ai::set_sample_rate(sample_rate))?;
}
Ok(())
}
/// Get the current data type of the driver's input stream.
///
/// This queries a single channel's type assuming all channels have the same sample type.
pub fn input_data_type(&self) -> Result<AsioSampleType, AsioError> {
stream_data_type(true)
}
/// Get the current data type of the driver's output stream.
///
/// This queries a single channel's type assuming all channels have the same sample type.
pub fn output_data_type(&self) -> Result<AsioSampleType, AsioError> {
stream_data_type(false)
}
/// Ask ASIO to allocate the buffers and give the callback pointers.
///
/// This will destroy any already allocated buffers.
///
/// The preferred buffer size from ASIO is used.
fn create_buffers(&self, buffer_infos: &mut [AsioBufferInfo]) -> Result<c_long, AsioError> {
let num_channels = buffer_infos.len();
// To pass as ai::ASIOCallbacks
let mut callbacks = create_asio_callbacks();
let mut state = self.inner.lock_state();
// Retrieve the available buffer sizes.
let buffer_sizes = asio_get_buffer_sizes()?;
if buffer_sizes.pref <= 0 {
panic!(
"`ASIOGetBufferSize` produced unusable preferred buffer size of {}",
buffer_sizes.pref,
);
}
// Ensure the driver is in the `Initialized` state.
if let DriverState::Running = *state {
state.stop()?;
}
if let DriverState::Prepared = *state {
state.dispose_buffers()?;
}
unsafe {
asio_result!(ai::ASIOCreateBuffers(
buffer_infos.as_mut_ptr() as *mut _,
num_channels as i32,
buffer_sizes.pref,
&mut callbacks as *mut _ as *mut _,
))?;
}
*state = DriverState::Prepared;
Ok(buffer_sizes.pref)
}
/// Creates the streams.
///
/// Both input and output streams need to be created together as a single slice of
/// `ASIOBufferInfo`.
fn create_streams(
&self,
mut input_buffer_infos: Vec<AsioBufferInfo>,
mut output_buffer_infos: Vec<AsioBufferInfo>,
) -> Result<AsioStreams, AsioError> {
let (input, output) = match (input_buffer_infos.is_empty(), output_buffer_infos.is_empty()) {
// Both stream exist.
(false, false) => {
// Create one continuous slice of buffers.
let split_point = input_buffer_infos.len();
let mut all_buffer_infos = input_buffer_infos;
all_buffer_infos.append(&mut output_buffer_infos);
// Create the buffers. On success, split the output and input again.
let buffer_size = self.create_buffers(&mut all_buffer_infos)?;
let output_buffer_infos = all_buffer_infos.split_off(split_point);
let input_buffer_infos = all_buffer_infos;
let input = Some(AsioStream {
buffer_infos: input_buffer_infos,
buffer_size,
});
let output = Some(AsioStream {
buffer_infos: output_buffer_infos,
buffer_size,
});
(input, output)
},
// Just input
(false, true) => {
let buffer_size = self.create_buffers(&mut input_buffer_infos)?;
let input = Some(AsioStream {
buffer_infos: input_buffer_infos,
buffer_size,
});
let output = None;
(input, output)
},
// Just output
(true, false) => {
let buffer_size = self.create_buffers(&mut output_buffer_infos)?;
let input = None;
let output = Some(AsioStream {
buffer_infos: output_buffer_infos,
buffer_size,
});
(input, output)
},
// Impossible
(true, true) => unreachable!("Trying to create streams without preparing"),
};
Ok(AsioStreams { input, output })
}
/// Prepare the input stream.
///
/// Because only the latest call to ASIOCreateBuffers is relevant this call will destroy all
/// past active buffers and recreate them.
///
/// For this reason we take the output stream if it exists.
///
/// `num_channels` is the desired number of input channels.
///
/// This returns a full AsioStreams with both input and output if output was active.
pub fn prepare_input_stream(
&self,
output: Option<AsioStream>,
num_channels: usize,
) -> Result<AsioStreams, AsioError> {
let input_buffer_infos = prepare_buffer_infos(true, num_channels);
let output_buffer_infos = output
.map(|output| output.buffer_infos)
.unwrap_or_else(Vec::new);
self.create_streams(input_buffer_infos, output_buffer_infos)
}
/// Prepare the output stream.
///
/// Because only the latest call to ASIOCreateBuffers is relevant this call will destroy all
/// past active buffers and recreate them.
///
/// For this reason we take the input stream if it exists.
///
/// `num_channels` is the desired number of output channels.
///
/// This returns a full AsioStreams with both input and output if input was active.
pub fn prepare_output_stream(
&self,
input: Option<AsioStream>,
num_channels: usize,
) -> Result<AsioStreams, AsioError> {
let input_buffer_infos = input
.map(|input| input.buffer_infos)
.unwrap_or_else(Vec::new);
let output_buffer_infos = prepare_buffer_infos(false, num_channels);
self.create_streams(input_buffer_infos, output_buffer_infos)
}
/// Releases buffers allocations.
///
/// This will `stop` the stream if the driver is `Running`.
///
/// No-op if no buffers are allocated.
pub fn dispose_buffers(&self) -> Result<(), AsioError> {
self.inner.dispose_buffers_inner()
}
/// Starts ASIO streams playing.
///
/// The driver must be in the `Prepared` state
///
/// If called successfully, the driver will be in the `Running` state.
///
/// No-op if already `Running`.
pub fn start(&self) -> Result<(), AsioError> {
let mut state = self.inner.lock_state();
if let DriverState::Running = *state {
return Ok(());
}
unsafe {
asio_result!(ai::ASIOStart())?;
}
*state = DriverState::Running;
Ok(())
}
/// Stops ASIO streams playing.
///
/// No-op if the state is not `Running`.
///
/// If the state was `Running` and the stream is stopped successfully, the driver will be in
/// the `Prepared` state.
pub fn stop(&self) -> Result<(), AsioError> {
self.inner.stop_inner()
}
/// Adds a callback to the list of active callbacks.
///
/// The given function receives the index of the buffer currently ready for processing.
///
/// Returns an ID uniquely associated with the given callback so that it may be removed later.
pub fn add_callback<F>(&self, callback: F) -> CallbackId
where
F: 'static + FnMut(i32) + Send,
{
let mut bc = BUFFER_CALLBACK.lock().unwrap();
let id = bc
.last()
.map(|&(id, _)| CallbackId(id.0.checked_add(1).expect("stream ID overflowed")))
.unwrap_or(CallbackId(0));
let cb = BufferCallback(Box::new(callback));
bc.push((id, cb));
id
}
/// Remove the callback with the given ID.
pub fn remove_callback(&self, rem_id: CallbackId) {
let mut bc = BUFFER_CALLBACK.lock().unwrap();
bc.retain(|&(id, _)| id != rem_id);
}
/// Consumes and destroys the `Driver`, stopping the streams if they are running and releasing
/// any associated resources.
///
/// Returns `Ok(true)` if the driver was successfully destroyed.
///
/// Returns `Ok(false)` if the driver was not destroyed because another handle to the driver
/// still exists.
///
/// Returns `Err` if some switching driver states failed or if ASIO returned an error on exit.
pub fn destroy(self) -> Result<bool, AsioError> {
let Driver { inner } = self;
match Arc::try_unwrap(inner) {
Err(_) => Ok(false),
Ok(mut inner) => {
inner.destroy_inner()?;
Ok(true)
}
}
}
}
impl DriverState {
fn stop(&mut self) -> Result<(), AsioError> {
if let DriverState::Running = *self {
unsafe {
asio_result!(ai::ASIOStop())?;
}
*self = DriverState::Prepared;
}
Ok(())
}
fn dispose_buffers(&mut self) -> Result<(), AsioError> {
if let DriverState::Initialized = *self {
return Ok(());
}
if let DriverState::Running = *self {
self.stop()?;
}
unsafe {
asio_result!(ai::ASIODisposeBuffers())?;
}
*self = DriverState::Initialized;
Ok(())
}
fn destroy(&mut self) -> Result<(), AsioError> {
if let DriverState::Running = *self {
self.stop()?;
}
if let DriverState::Prepared = *self {
self.dispose_buffers()?;
}
unsafe {
asio_result!(ai::ASIOExit())?;
ai::remove_current_driver();
}
Ok(())
}
}
impl DriverInner {
fn lock_state(&self) -> MutexGuard<DriverState> {
self.state.lock().expect("failed to lock `DriverState`")
}
fn stop_inner(&self) -> Result<(), AsioError> {
let mut state = self.lock_state();
state.stop()
}
fn dispose_buffers_inner(&self) -> Result<(), AsioError> {
let mut state = self.lock_state();
state.dispose_buffers()
}
fn destroy_inner(&mut self) -> Result<(), AsioError> {
{
let mut state = self.lock_state();
state.destroy()?;
// Clear any existing stream callbacks.
if let Ok(mut bcs) = BUFFER_CALLBACK.lock() {
bcs.clear();
}
}
// Signal that the driver has been destroyed.
self.destroyed = true;
Ok(())
}
}
impl Drop for DriverInner {
fn drop(&mut self) {
if !self.destroyed {
// We probably shouldn't `panic!` in the destructor? We also shouldn't ignore errors
// though either.
self.destroy_inner().ok();
}
}
}
unsafe impl Send for AsioStream {}
/// Used by the input and output stream creation process.
fn prepare_buffer_infos(is_input: bool, n_channels: usize) -> Vec<AsioBufferInfo> {
let is_input = if is_input { 1 } else { 0 };
(0..n_channels)
.map(|ch| {
let channel_num = ch as c_long;
// To be filled by ASIOCreateBuffers.
let buffers = [std::ptr::null_mut(); 2];
AsioBufferInfo { is_input, channel_num, buffers }
})
.collect()
}
/// The set of callbacks passed to `ASIOCreateBuffers`.
fn create_asio_callbacks() -> AsioCallbacks {
AsioCallbacks {
buffer_switch: buffer_switch,
sample_rate_did_change: sample_rate_did_change,
asio_message: asio_message,
buffer_switch_time_info: buffer_switch_time_info,
}
}
/// Retrieve the minimum, maximum and preferred buffer sizes along with the available
/// buffer size granularity.
fn asio_get_buffer_sizes() -> Result<BufferSizes, AsioError> {
let mut b = BufferSizes::default();
unsafe {
let res = ai::ASIOGetBufferSize(&mut b.min, &mut b.max, &mut b.pref, &mut b.grans);
asio_result!(res)?;
}
Ok(b)
}
/// Retrieve the `ASIOChannelInfo` associated with the channel at the given index on either the
/// input or output stream (`true` for input).
fn asio_channel_info(channel: c_long, is_input: bool) -> Result<ai::ASIOChannelInfo, AsioError> {
let mut channel_info = ai::ASIOChannelInfo {
// Which channel we are querying
channel,
// Was it input or output
isInput: if is_input { 1 } else { 0 },
// Was it active
isActive: 0,
channelGroup: 0,
// The sample type
type_: 0,
name: [0 as c_char; 32],
};
unsafe {
asio_result!(ai::ASIOGetChannelInfo(&mut channel_info))?;
Ok(channel_info)
}
}
/// Retrieve the data type of either the input or output stream.
///
/// If `is_input` is true, this will be queried on the input stream.
fn stream_data_type(is_input: bool) -> Result<AsioSampleType, AsioError> {
let channel_info = asio_channel_info(0, is_input)?;
Ok(FromPrimitive::from_i32(channel_info.type_).expect("unkown `ASIOSampletype` value"))
}
/// ASIO uses null terminated c strings for driver names.
///
/// This converts to utf8.
fn driver_name_to_utf8(bytes: &[c_char]) -> std::borrow::Cow<str> {
unsafe {
CStr::from_ptr(bytes.as_ptr()).to_string_lossy()
}
}
/// ASIO uses null terminated c strings for channel names.
///
/// This converts to utf8.
fn _channel_name_to_utf8(bytes: &[c_char]) -> std::borrow::Cow<str> {
unsafe {
CStr::from_ptr(bytes.as_ptr()).to_string_lossy()
}
}
/// Indicates the stream sample rate has changed.
///
/// TODO: Provide some way of allowing CPAL to handle this.
extern "C" fn sample_rate_did_change(s_rate: c_double) -> () {
eprintln!("unhandled sample rate change to {}", s_rate);
}
/// Message callback for ASIO to notify of certain events.
extern "C" fn asio_message(
selector: c_long,
value: c_long,
_message: *mut (),
_opt: *mut c_double,
) -> c_long {
match selector {
ai::kAsioSelectorSupported => {
// Indicate what message selectors are supported.
match value {
| ai::kAsioResetRequest
| ai::kAsioEngineVersion
| ai::kAsioResyncRequest
| ai::kAsioLatenciesChanged
// Following added in ASIO 2.0.
| ai::kAsioSupportsTimeInfo
| ai::kAsioSupportsTimeCode
| ai::kAsioSupportsInputMonitor => 1,
_ => 0,
}
}
ai::kAsioResetRequest => {
// Defer the task and perform the reset of the driver during the next "safe" situation
// You cannot reset the driver right now, as this code is called from the driver. Reset
// the driver is done by completely destruct it. I.e. ASIOStop(), ASIODisposeBuffers(),
// Destruction. Afterwards you initialize the driver again.
// TODO: Handle this.
1
}
ai::kAsioResyncRequest => {
// This informs the application, that the driver encountered some non fatal data loss.
// It is used for synchronization purposes of different media. Added mainly to work
// around the Win16Mutex problems in Windows 95/98 with the Windows Multimedia system,
// which could loose data because the Mutex was hold too long by another thread.
// However a driver can issue it in other situations, too.
// TODO: Handle this.
1
}
ai::kAsioLatenciesChanged => {
// This will inform the host application that the drivers were latencies changed.
// Beware, it this does not mean that the buffer sizes have changed! You might need to
// update internal delay data.
// TODO: Handle this.
1
}
ai::kAsioEngineVersion => {
// Return the supported ASIO version of the host application If a host applications
// does not implement this selector, ASIO 1.0 is assumed by the driver
2
}
ai::kAsioSupportsTimeInfo => {
// Informs the driver whether the asioCallbacks.bufferSwitchTimeInfo() callback is
// supported. For compatibility with ASIO 1.0 drivers the host application should
// always support the "old" bufferSwitch method, too, which we do.
1
}
ai::kAsioSupportsTimeCode => {
// Informs the driver whether the application is interested in time code info. If an
// application does not need to know about time code, the driver has less work to do.
// TODO: Provide an option for this?
0
}
_ => 0, // Unknown/unhandled message type.
}
}
/// Similar to buffer switch but with time info.
///
/// If only `buffer_switch` is called by the driver instead, the `buffer_switch` callback will
/// create the necessary timing info and call this function.
///
/// TODO: Provide some access to `ai::ASIOTime` once CPAL gains support for time stamps.
extern "C" fn buffer_switch_time_info(
time: *mut ai::ASIOTime,
double_buffer_index: c_long,
_direct_process: c_long,
) -> *mut ai::ASIOTime {
// This lock is probably unavoidable, but locks in the audio stream are not great.
let mut bcs = BUFFER_CALLBACK.lock().unwrap();
for &mut (_, ref mut bc) in bcs.iter_mut() {
bc.run(double_buffer_index);
}
time
}
/// This is called by ASIO.
///
/// Here we run the callback for each stream.
///
/// `double_buffer_index` is either `0` or `1` indicating which buffer to fill.
extern "C" fn buffer_switch(double_buffer_index: c_long, direct_process: c_long) -> () {
// Emulate the time info provided by the `buffer_switch_time_info` callback.
// This is an attempt at matching the behaviour in `hostsample.cpp` from the SDK.
let mut time = unsafe {
let mut time: AsioTime = std::mem::zeroed();
let res = ai::ASIOGetSamplePosition(
&mut time.time_info.sample_position,
&mut time.time_info.system_time,
);
if let Ok(()) = asio_result!(res) {
time.time_info.flags =
(ai::AsioTimeInfoFlags::kSystemTimeValid | ai::AsioTimeInfoFlags::kSamplePositionValid).0;
}
time
};
// Actual processing happens within the `buffer_switch_time_info` callback.
let asio_time_ptr = &mut time as *mut AsioTime as *mut ai::ASIOTime;
buffer_switch_time_info(asio_time_ptr, double_buffer_index, direct_process);
}
#[test]
fn check_type_sizes() {
assert_eq!(std::mem::size_of::<AsioSampleRate>(), std::mem::size_of::<ai::ASIOSampleRate>());
assert_eq!(std::mem::size_of::<AsioTimeCode>(), std::mem::size_of::<ai::ASIOTimeCode>());
assert_eq!(std::mem::size_of::<AsioTime>(), std::mem::size_of::<ai::ASIOTime>());
}