cpal/src/host/webaudio/mod.rs

463 lines
16 KiB
Rust

extern crate js_sys;
extern crate wasm_bindgen;
extern crate web_sys;
use self::js_sys::eval;
use self::wasm_bindgen::prelude::*;
use self::wasm_bindgen::JsCast;
use self::web_sys::{AudioContext, AudioContextOptions};
use crate::{
BackendSpecificError, BufferSize, BuildStreamError, Data, DefaultStreamConfigError,
DeviceNameError, DevicesError, InputCallbackInfo, OutputCallbackInfo, PauseStreamError,
PlayStreamError, SampleFormat, SampleRate, StreamConfig, StreamError, SupportedBufferSize,
SupportedStreamConfig, SupportedStreamConfigRange, SupportedStreamConfigsError,
};
use std::ops::DerefMut;
use std::sync::{Arc, Mutex, RwLock};
use traits::{DeviceTrait, HostTrait, StreamTrait};
/// Content is false if the iterator is empty.
pub struct Devices(bool);
#[derive(Clone, Debug, PartialEq, Eq)]
pub struct Device;
pub struct Host;
pub struct Stream {
ctx: Arc<AudioContext>,
on_ended_closures: Vec<Arc<RwLock<Option<Closure<dyn FnMut()>>>>>,
config: StreamConfig,
buffer_size_frames: usize,
}
pub type SupportedInputConfigs = ::std::vec::IntoIter<SupportedStreamConfigRange>;
pub type SupportedOutputConfigs = ::std::vec::IntoIter<SupportedStreamConfigRange>;
const MIN_CHANNELS: u16 = 1;
const MAX_CHANNELS: u16 = 32;
const MIN_SAMPLE_RATE: SampleRate = SampleRate(8_000);
const MAX_SAMPLE_RATE: SampleRate = SampleRate(96_000);
const DEFAULT_SAMPLE_RATE: SampleRate = SampleRate(44_100);
const MIN_BUFFER_SIZE: u32 = 1;
const MAX_BUFFER_SIZE: u32 = std::u32::MAX;
const DEFAULT_BUFFER_SIZE: usize = 2048;
const SUPPORTED_SAMPLE_FORMAT: SampleFormat = SampleFormat::F32;
impl Host {
pub fn new() -> Result<Self, crate::HostUnavailable> {
Ok(Host)
}
}
impl HostTrait for Host {
type Devices = Devices;
type Device = Device;
fn is_available() -> bool {
// Assume this host is always available on webaudio.
true
}
fn devices(&self) -> Result<Self::Devices, DevicesError> {
Devices::new()
}
fn default_input_device(&self) -> Option<Self::Device> {
default_input_device()
}
fn default_output_device(&self) -> Option<Self::Device> {
default_output_device()
}
}
impl Devices {
fn new() -> Result<Self, DevicesError> {
Ok(Self::default())
}
}
impl Device {
#[inline]
fn name(&self) -> Result<String, DeviceNameError> {
Ok("Default Device".to_owned())
}
#[inline]
fn supported_input_configs(
&self,
) -> Result<SupportedInputConfigs, SupportedStreamConfigsError> {
// TODO
Ok(Vec::new().into_iter())
}
#[inline]
fn supported_output_configs(
&self,
) -> Result<SupportedOutputConfigs, SupportedStreamConfigsError> {
let buffer_size = SupportedBufferSize::Range {
min: MIN_BUFFER_SIZE,
max: MAX_BUFFER_SIZE,
};
let configs: Vec<_> = (MIN_CHANNELS..=MAX_CHANNELS)
.map(|channels| SupportedStreamConfigRange {
channels,
min_sample_rate: MIN_SAMPLE_RATE,
max_sample_rate: MAX_SAMPLE_RATE,
buffer_size: buffer_size.clone(),
sample_format: SUPPORTED_SAMPLE_FORMAT,
})
.collect();
Ok(configs.into_iter())
}
#[inline]
fn default_input_config(&self) -> Result<SupportedStreamConfig, DefaultStreamConfigError> {
// TODO
Err(DefaultStreamConfigError::StreamTypeNotSupported)
}
#[inline]
fn default_output_config(&self) -> Result<SupportedStreamConfig, DefaultStreamConfigError> {
const EXPECT: &str = "expected at least one valid webaudio stream config";
let mut configs: Vec<_> = self.supported_output_configs().expect(EXPECT).collect();
configs.sort_by(|a, b| a.cmp_default_heuristics(b));
let config = configs
.into_iter()
.last()
.expect(EXPECT)
.with_sample_rate(DEFAULT_SAMPLE_RATE);
Ok(config)
}
}
impl DeviceTrait for Device {
type SupportedInputConfigs = SupportedInputConfigs;
type SupportedOutputConfigs = SupportedOutputConfigs;
type Stream = Stream;
#[inline]
fn name(&self) -> Result<String, DeviceNameError> {
Device::name(self)
}
#[inline]
fn supported_input_configs(
&self,
) -> Result<Self::SupportedInputConfigs, SupportedStreamConfigsError> {
Device::supported_input_configs(self)
}
#[inline]
fn supported_output_configs(
&self,
) -> Result<Self::SupportedOutputConfigs, SupportedStreamConfigsError> {
Device::supported_output_configs(self)
}
#[inline]
fn default_input_config(&self) -> Result<SupportedStreamConfig, DefaultStreamConfigError> {
Device::default_input_config(self)
}
#[inline]
fn default_output_config(&self) -> Result<SupportedStreamConfig, DefaultStreamConfigError> {
Device::default_output_config(self)
}
fn build_input_stream_raw<D, E>(
&self,
_config: &StreamConfig,
_sample_format: SampleFormat,
_data_callback: D,
_error_callback: E,
) -> Result<Self::Stream, BuildStreamError>
where
D: FnMut(&Data, &InputCallbackInfo) + Send + 'static,
E: FnMut(StreamError) + Send + 'static,
{
// TODO
Err(BuildStreamError::StreamConfigNotSupported)
}
/// Create an output stream.
fn build_output_stream_raw<D, E>(
&self,
config: &StreamConfig,
sample_format: SampleFormat,
data_callback: D,
_error_callback: E,
) -> Result<Self::Stream, BuildStreamError>
where
D: FnMut(&mut Data, &OutputCallbackInfo) + Send + 'static,
E: FnMut(StreamError) + Send + 'static,
{
if !valid_config(config, sample_format) {
return Err(BuildStreamError::StreamConfigNotSupported);
}
let n_channels = config.channels as usize;
let buffer_size_frames = match config.buffer_size {
BufferSize::Fixed(v) => {
if v == 0 {
return Err(BuildStreamError::StreamConfigNotSupported);
} else {
v as usize
}
}
BufferSize::Default => DEFAULT_BUFFER_SIZE,
};
let buffer_size_samples = buffer_size_frames * n_channels;
let buffer_time_step_secs = buffer_time_step_secs(buffer_size_frames, config.sample_rate);
let data_callback = Arc::new(Mutex::new(Box::new(data_callback)));
// Create the WebAudio stream.
let mut stream_opts = AudioContextOptions::new();
stream_opts.sample_rate(config.sample_rate.0 as f32);
let ctx = Arc::new(
AudioContext::new_with_context_options(&stream_opts).map_err(
|err| -> BuildStreamError {
let description = format!("{:?}", err);
let err = BackendSpecificError { description };
err.into()
},
)?,
);
// A container for managing the lifecycle of the audio callbacks.
let mut on_ended_closures: Vec<Arc<RwLock<Option<Closure<dyn FnMut()>>>>> = Vec::new();
// A cursor keeping track of the current time at which new frames should be scheduled.
let time = Arc::new(RwLock::new(0f64));
// Create a set of closures / callbacks which will continuously fetch and schedule sample
// playback. Starting with two workers, eg a front and back buffer so that audio frames
// can be fetched in the background.
for _i in 0..2 {
let data_callback_handle = data_callback.clone();
let ctx_handle = ctx.clone();
let time_handle = time.clone();
// A set of temporary buffers to be used for intermediate sample transformation steps.
let mut temporary_buffer = vec![0f32; buffer_size_samples];
let mut temporary_channel_buffer = vec![0f32; buffer_size_frames];
// Create a webaudio buffer which will be reused to avoid allocations.
let ctx_buffer = ctx
.create_buffer(
config.channels as u32,
buffer_size_frames as u32,
config.sample_rate.0 as f32,
)
.map_err(|err| -> BuildStreamError {
let description = format!("{:?}", err);
let err = BackendSpecificError { description };
err.into()
})?;
// A self reference to this closure for passing to future audio event calls.
let on_ended_closure: Arc<RwLock<Option<Closure<dyn FnMut()>>>> =
Arc::new(RwLock::new(None));
let on_ended_closure_handle = on_ended_closure.clone();
on_ended_closure
.write()
.unwrap()
.replace(Closure::wrap(Box::new(move || {
let now = ctx_handle.current_time();
let time_at_start_of_buffer = {
let time_at_start_of_buffer = time_handle
.read()
.expect("Unable to get a read lock on the time cursor");
// Synchronise first buffer as necessary (eg. keep the time value
// referenced to the context clock).
if *time_at_start_of_buffer > 0.001 {
*time_at_start_of_buffer
} else {
// 25ms of time to fetch the first sample data, increase to avoid
// initial underruns.
now + 0.025
}
};
// Populate the sample data into an interleaved temporary buffer.
{
let len = temporary_buffer.len();
let data = temporary_buffer.as_mut_ptr() as *mut ();
let mut data = unsafe { Data::from_parts(data, len, sample_format) };
let mut data_callback = data_callback_handle.lock().unwrap();
let callback = crate::StreamInstant::from_secs_f64(now);
let playback = crate::StreamInstant::from_secs_f64(time_at_start_of_buffer);
let timestamp = crate::OutputStreamTimestamp { callback, playback };
let info = OutputCallbackInfo { timestamp };
(data_callback.deref_mut())(&mut data, &info);
}
// Deinterleave the sample data and copy into the audio context buffer.
// We do not reference the audio context buffer directly eg getChannelData.
// As wasm-bindgen only gives us a copy, not a direct reference.
for channel in 0..n_channels {
for i in 0..buffer_size_frames {
temporary_channel_buffer[i] =
temporary_buffer[n_channels * i + channel];
}
ctx_buffer
.copy_to_channel(&mut temporary_channel_buffer, channel as i32)
.expect("Unable to write sample data into the audio context buffer");
}
// Create an AudioBufferSourceNode, schedule it to playback the reused buffer
// in the future.
let source = ctx_handle
.create_buffer_source()
.expect("Unable to create a webaudio buffer source");
source.set_buffer(Some(&ctx_buffer));
source
.connect_with_audio_node(&ctx_handle.destination())
.expect(
"Unable to connect the web audio buffer source to the context destination",
);
source.set_onended(Some(
on_ended_closure_handle
.read()
.unwrap()
.as_ref()
.unwrap()
.as_ref()
.unchecked_ref(),
));
source
.start_with_when(time_at_start_of_buffer)
.expect("Unable to start the webaudio buffer source");
// Keep track of when the next buffer worth of samples should be played.
*time_handle.write().unwrap() = time_at_start_of_buffer + buffer_time_step_secs;
}) as Box<dyn FnMut()>));
on_ended_closures.push(on_ended_closure);
}
Ok(Stream {
ctx,
on_ended_closures,
config: config.clone(),
buffer_size_frames,
})
}
}
impl StreamTrait for Stream {
fn play(&self) -> Result<(), PlayStreamError> {
let window = web_sys::window().unwrap();
match self.ctx.resume() {
Ok(_) => {
// Begin webaudio playback, initially scheduling the closures to fire on a timeout
// event.
let mut offset_ms = 10;
let time_step_secs =
buffer_time_step_secs(self.buffer_size_frames, self.config.sample_rate);
let time_step_ms = (time_step_secs * 1_000.0) as i32;
for on_ended_closure in self.on_ended_closures.iter() {
window
.set_timeout_with_callback_and_timeout_and_arguments_0(
on_ended_closure
.read()
.unwrap()
.as_ref()
.unwrap()
.as_ref()
.unchecked_ref(),
offset_ms,
)
.unwrap();
offset_ms += time_step_ms;
}
Ok(())
}
Err(err) => {
let description = format!("{:?}", err);
let err = BackendSpecificError { description };
Err(err.into())
}
}
}
fn pause(&self) -> Result<(), PauseStreamError> {
match self.ctx.suspend() {
Ok(_) => Ok(()),
Err(err) => {
let description = format!("{:?}", err);
let err = BackendSpecificError { description };
Err(err.into())
}
}
}
}
impl Drop for Stream {
fn drop(&mut self) {
let _ = self.ctx.close();
}
}
impl Default for Devices {
fn default() -> Devices {
// We produce an empty iterator if the WebAudio API isn't available.
Devices(is_webaudio_available())
}
}
impl Iterator for Devices {
type Item = Device;
#[inline]
fn next(&mut self) -> Option<Device> {
if self.0 {
self.0 = false;
Some(Device)
} else {
None
}
}
}
#[inline]
fn default_input_device() -> Option<Device> {
// TODO
None
}
#[inline]
fn default_output_device() -> Option<Device> {
if is_webaudio_available() {
Some(Device)
} else {
None
}
}
// Detects whether the `AudioContext` global variable is available.
fn is_webaudio_available() -> bool {
if let Ok(audio_context_is_defined) = eval("typeof AudioContext !== 'undefined'") {
audio_context_is_defined.as_bool().unwrap()
} else {
false
}
}
// Whether or not the given stream configuration is valid for building a stream.
fn valid_config(conf: &StreamConfig, sample_format: SampleFormat) -> bool {
conf.channels <= MAX_CHANNELS
&& conf.channels >= MIN_CHANNELS
&& conf.sample_rate <= MAX_SAMPLE_RATE
&& conf.sample_rate >= MIN_SAMPLE_RATE
&& sample_format == SUPPORTED_SAMPLE_FORMAT
}
fn buffer_time_step_secs(buffer_size_frames: usize, sample_rate: SampleRate) -> f64 {
buffer_size_frames as f64 / sample_rate.0 as f64
}