cpal/src/host/asio/stream.rs

753 lines
28 KiB
Rust

extern crate asio_sys as sys;
extern crate num_traits;
use self::num_traits::PrimInt;
use super::parking_lot::Mutex;
use super::Device;
use crate::{
BackendSpecificError, BufferSize, BuildStreamError, Data, InputCallbackInfo,
OutputCallbackInfo, PauseStreamError, PlayStreamError, Sample, SampleFormat, StreamConfig,
StreamError,
};
use std;
use std::sync::atomic::{AtomicBool, Ordering};
use std::sync::Arc;
/// Sample types whose constant silent value is known.
trait Silence {
const SILENCE: Self;
}
/// Constraints on the ASIO sample types.
trait AsioSample: Clone + Copy + Silence + std::ops::Add<Self, Output = Self> {
fn to_cpal_sample<T: Sample>(&self) -> T;
fn from_cpal_sample<T: Sample>(&T) -> Self;
}
// Used to keep track of whether or not the current current asio stream buffer requires
// being silencing before summing audio.
#[derive(Default)]
struct SilenceAsioBuffer {
first: bool,
second: bool,
}
pub struct Stream {
playing: Arc<AtomicBool>,
// Ensure the `Driver` does not terminate until the last stream is dropped.
driver: Arc<sys::Driver>,
asio_streams: Arc<Mutex<sys::AsioStreams>>,
callback_id: sys::CallbackId,
}
impl Stream {
pub fn play(&self) -> Result<(), PlayStreamError> {
self.playing.store(true, Ordering::SeqCst);
Ok(())
}
pub fn pause(&self) -> Result<(), PauseStreamError> {
self.playing.store(false, Ordering::SeqCst);
Ok(())
}
}
impl Device {
pub fn build_input_stream_raw<D, E>(
&self,
config: &StreamConfig,
sample_format: SampleFormat,
mut data_callback: D,
_error_callback: E,
) -> Result<Stream, BuildStreamError>
where
D: FnMut(&Data, &InputCallbackInfo) + Send + 'static,
E: FnMut(StreamError) + Send + 'static,
{
let stream_type = self.driver.input_data_type().map_err(build_stream_err)?;
// Ensure that the desired sample type is supported.
let expected_sample_format = super::device::convert_data_type(&stream_type)
.ok_or(BuildStreamError::StreamConfigNotSupported)?;
if sample_format != expected_sample_format {
return Err(BuildStreamError::StreamConfigNotSupported);
}
let num_channels = config.channels.clone();
let buffer_size = self.get_or_create_input_stream(config, sample_format)?;
let cpal_num_samples = buffer_size * num_channels as usize;
// Create the buffer depending on the size of the data type.
let len_bytes = cpal_num_samples * sample_format.sample_size();
let mut interleaved = vec![0u8; len_bytes];
let stream_playing = Arc::new(AtomicBool::new(false));
let playing = Arc::clone(&stream_playing);
let asio_streams = self.asio_streams.clone();
// Set the input callback.
// This is most performance critical part of the ASIO bindings.
let config = config.clone();
let callback_id = self.driver.add_callback(move |callback_info| unsafe {
// If not playing return early.
if !playing.load(Ordering::SeqCst) {
return;
}
// There is 0% chance of lock contention the host only locks when recreating streams.
let stream_lock = asio_streams.lock();
let ref asio_stream = match stream_lock.input {
Some(ref asio_stream) => asio_stream,
None => return,
};
/// 1. Write from the ASIO buffer to the interleaved CPAL buffer.
/// 2. Deliver the CPAL buffer to the user callback.
unsafe fn process_input_callback<A, B, D, F>(
data_callback: &mut D,
interleaved: &mut [u8],
asio_stream: &sys::AsioStream,
asio_info: &sys::CallbackInfo,
sample_rate: crate::SampleRate,
from_endianness: F,
) where
A: AsioSample,
B: Sample,
D: FnMut(&Data, &InputCallbackInfo) + Send + 'static,
F: Fn(A) -> A,
{
// 1. Write the ASIO channels to the CPAL buffer.
let interleaved: &mut [B] = cast_slice_mut(interleaved);
let n_frames = asio_stream.buffer_size as usize;
let n_channels = interleaved.len() / n_frames;
let buffer_index = asio_info.buffer_index as usize;
for ch_ix in 0..n_channels {
let asio_channel = asio_channel_slice::<A>(asio_stream, buffer_index, ch_ix);
for (frame, s_asio) in interleaved.chunks_mut(n_channels).zip(asio_channel) {
frame[ch_ix] = from_endianness(*s_asio).to_cpal_sample();
}
}
// 2. Deliver the interleaved buffer to the callback.
let data = interleaved.as_mut_ptr() as *mut ();
let len = interleaved.len();
let data = Data::from_parts(data, len, B::FORMAT);
let callback = system_time_to_stream_instant(asio_info.system_time);
let delay = frames_to_duration(n_frames, sample_rate);
let capture = callback
.sub(delay)
.expect("`capture` occurs before origin of alsa `StreamInstant`");
let timestamp = crate::InputStreamTimestamp { callback, capture };
let info = InputCallbackInfo { timestamp };
data_callback(&data, &info);
}
match (&stream_type, sample_format) {
(&sys::AsioSampleType::ASIOSTInt16LSB, SampleFormat::I16) => {
process_input_callback::<i16, i16, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
from_le,
);
}
(&sys::AsioSampleType::ASIOSTInt16MSB, SampleFormat::I16) => {
process_input_callback::<i16, i16, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
from_be,
);
}
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// trait for the `to_le` and `to_be` methods, but this does not support floats.
(&sys::AsioSampleType::ASIOSTFloat32LSB, SampleFormat::F32)
| (&sys::AsioSampleType::ASIOSTFloat32MSB, SampleFormat::F32) => {
process_input_callback::<f32, f32, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
std::convert::identity::<f32>,
);
}
// TODO: Add support for the following sample formats to CPAL and simplify the
// `process_output_callback` function above by removing the unnecessary sample
// conversion function.
(&sys::AsioSampleType::ASIOSTInt32LSB, SampleFormat::I16) => {
process_input_callback::<i32, i16, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
from_le,
);
}
(&sys::AsioSampleType::ASIOSTInt32MSB, SampleFormat::I16) => {
process_input_callback::<i32, i16, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
from_be,
);
}
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// trait for the `to_le` and `to_be` methods, but this does not support floats.
(&sys::AsioSampleType::ASIOSTFloat64LSB, SampleFormat::F32)
| (&sys::AsioSampleType::ASIOSTFloat64MSB, SampleFormat::F32) => {
process_input_callback::<f64, f32, _, _>(
&mut data_callback,
&mut interleaved,
asio_stream,
callback_info,
config.sample_rate,
std::convert::identity::<f64>,
);
}
unsupported_format_pair => unreachable!(
"`build_input_stream_raw` should have returned with unsupported \
format {:?}",
unsupported_format_pair
),
}
});
let driver = self.driver.clone();
let asio_streams = self.asio_streams.clone();
// Immediately start the device?
self.driver.start().map_err(build_stream_err)?;
Ok(Stream {
playing: stream_playing,
driver,
asio_streams,
callback_id,
})
}
pub fn build_output_stream_raw<D, E>(
&self,
config: &StreamConfig,
sample_format: SampleFormat,
mut data_callback: D,
_error_callback: E,
) -> Result<Stream, BuildStreamError>
where
D: FnMut(&mut Data, &OutputCallbackInfo) + Send + 'static,
E: FnMut(StreamError) + Send + 'static,
{
let stream_type = self.driver.output_data_type().map_err(build_stream_err)?;
// Ensure that the desired sample type is supported.
let expected_sample_format = super::device::convert_data_type(&stream_type)
.ok_or(BuildStreamError::StreamConfigNotSupported)?;
if sample_format != expected_sample_format {
return Err(BuildStreamError::StreamConfigNotSupported);
}
let num_channels = config.channels.clone();
let buffer_size = self.get_or_create_output_stream(config, sample_format)?;
let cpal_num_samples = buffer_size * num_channels as usize;
// Create buffers depending on data type.
let len_bytes = cpal_num_samples * sample_format.sample_size();
let mut interleaved = vec![0u8; len_bytes];
let mut silence_asio_buffer = SilenceAsioBuffer::default();
let stream_playing = Arc::new(AtomicBool::new(false));
let playing = Arc::clone(&stream_playing);
let asio_streams = self.asio_streams.clone();
let config = config.clone();
let callback_id = self.driver.add_callback(move |callback_info| unsafe {
// If not playing, return early.
if !playing.load(Ordering::SeqCst) {
return;
}
// There is 0% chance of lock contention the host only locks when recreating streams.
let stream_lock = asio_streams.lock();
let ref asio_stream = match stream_lock.output {
Some(ref asio_stream) => asio_stream,
None => return,
};
// Silence the ASIO buffer that is about to be used.
//
// This checks if any other callbacks have already silenced the buffer associated with
// the current `buffer_index`.
//
// If not, we will silence it and set the opposite buffer half to unsilenced.
let silence = match callback_info.buffer_index {
0 if !silence_asio_buffer.first => {
silence_asio_buffer.first = true;
silence_asio_buffer.second = false;
true
}
0 => false,
1 if !silence_asio_buffer.second => {
silence_asio_buffer.second = true;
silence_asio_buffer.first = false;
true
}
1 => false,
_ => unreachable!("ASIO uses a double-buffer so there should only be 2"),
};
/// 1. Render the given callback to the given buffer of interleaved samples.
/// 2. If required, silence the ASIO buffer.
/// 3. Finally, write the interleaved data to the non-interleaved ASIO buffer,
/// performing endianness conversions as necessary.
unsafe fn process_output_callback<A, B, D, F>(
data_callback: &mut D,
interleaved: &mut [u8],
silence_asio_buffer: bool,
asio_stream: &sys::AsioStream,
asio_info: &sys::CallbackInfo,
sample_rate: crate::SampleRate,
to_endianness: F,
) where
A: Sample,
B: AsioSample,
D: FnMut(&mut Data, &OutputCallbackInfo) + Send + 'static,
F: Fn(B) -> B,
{
// 1. Render interleaved buffer from callback.
let interleaved: &mut [A] = cast_slice_mut(interleaved);
let data = interleaved.as_mut_ptr() as *mut ();
let len = interleaved.len();
let mut data = Data::from_parts(data, len, A::FORMAT);
let callback = system_time_to_stream_instant(asio_info.system_time);
let n_frames = asio_stream.buffer_size as usize;
let delay = frames_to_duration(n_frames, sample_rate);
let playback = callback
.add(delay)
.expect("`playback` occurs beyond representation supported by `StreamInstant`");
let timestamp = crate::OutputStreamTimestamp { callback, playback };
let info = OutputCallbackInfo { timestamp };
data_callback(&mut data, &info);
// 2. Silence ASIO channels if necessary.
let n_channels = interleaved.len() / n_frames;
let buffer_index = asio_info.buffer_index as usize;
if silence_asio_buffer {
for ch_ix in 0..n_channels {
let asio_channel =
asio_channel_slice_mut::<B>(asio_stream, buffer_index, ch_ix);
asio_channel
.iter_mut()
.for_each(|s| *s = to_endianness(B::SILENCE));
}
}
// 3. Write interleaved samples to ASIO channels, one channel at a time.
for ch_ix in 0..n_channels {
let asio_channel =
asio_channel_slice_mut::<B>(asio_stream, buffer_index, ch_ix);
for (frame, s_asio) in interleaved.chunks(n_channels).zip(asio_channel) {
*s_asio = *s_asio + to_endianness(B::from_cpal_sample(&frame[ch_ix]));
}
}
}
match (sample_format, &stream_type) {
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt16LSB) => {
process_output_callback::<i16, i16, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
to_le,
);
}
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt16MSB) => {
process_output_callback::<i16, i16, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
to_be,
);
}
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// trait for the `to_le` and `to_be` methods, but this does not support floats.
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat32LSB)
| (SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat32MSB) => {
process_output_callback::<f32, f32, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
std::convert::identity::<f32>,
);
}
// TODO: Add support for the following sample formats to CPAL and simplify the
// `process_output_callback` function above by removing the unnecessary sample
// conversion function.
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt32LSB) => {
process_output_callback::<i16, i32, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
to_le,
);
}
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt32MSB) => {
process_output_callback::<i16, i32, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
to_be,
);
}
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// trait for the `to_le` and `to_be` methods, but this does not support floats.
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat64LSB)
| (SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat64MSB) => {
process_output_callback::<f32, f64, _, _>(
&mut data_callback,
&mut interleaved,
silence,
asio_stream,
callback_info,
config.sample_rate,
std::convert::identity::<f64>,
);
}
unsupported_format_pair => unreachable!(
"`build_output_stream_raw` should have returned with unsupported \
format {:?}",
unsupported_format_pair
),
}
});
let driver = self.driver.clone();
let asio_streams = self.asio_streams.clone();
// Immediately start the device?
self.driver.start().map_err(build_stream_err)?;
Ok(Stream {
playing: stream_playing,
driver,
asio_streams,
callback_id,
})
}
/// Create a new CPAL Input Stream.
///
/// If there is no existing ASIO Input Stream it will be created.
///
/// On success, the buffer size of the stream is returned.
fn get_or_create_input_stream(
&self,
config: &StreamConfig,
sample_format: SampleFormat,
) -> Result<usize, BuildStreamError> {
match self.default_input_config() {
Ok(f) => {
let num_asio_channels = f.channels;
check_config(&self.driver, config, sample_format, num_asio_channels)
}
Err(_) => Err(BuildStreamError::StreamConfigNotSupported),
}?;
let num_channels = config.channels as usize;
let ref mut streams = *self.asio_streams.lock();
let buffer_size = match config.buffer_size {
BufferSize::Fixed(v) => Some(v as i32),
BufferSize::Default => None,
};
// Either create a stream if thers none or had back the
// size of the current one.
match streams.input {
Some(ref input) => Ok(input.buffer_size as usize),
None => {
let output = streams.output.take();
self.driver
.prepare_input_stream(output, num_channels, buffer_size)
.map(|new_streams| {
let bs = match new_streams.input {
Some(ref inp) => inp.buffer_size as usize,
None => unreachable!(),
};
*streams = new_streams;
bs
})
.map_err(|ref e| {
println!("Error preparing stream: {}", e);
BuildStreamError::DeviceNotAvailable
})
}
}
}
/// Create a new CPAL Output Stream.
///
/// If there is no existing ASIO Output Stream it will be created.
fn get_or_create_output_stream(
&self,
config: &StreamConfig,
sample_format: SampleFormat,
) -> Result<usize, BuildStreamError> {
match self.default_output_config() {
Ok(f) => {
let num_asio_channels = f.channels;
check_config(&self.driver, config, sample_format, num_asio_channels)
}
Err(_) => Err(BuildStreamError::StreamConfigNotSupported),
}?;
let num_channels = config.channels as usize;
let ref mut streams = *self.asio_streams.lock();
let buffer_size = match config.buffer_size {
BufferSize::Fixed(v) => Some(v as i32),
BufferSize::Default => None,
};
// Either create a stream if thers none or had back the
// size of the current one.
match streams.output {
Some(ref output) => Ok(output.buffer_size as usize),
None => {
let output = streams.output.take();
self.driver
.prepare_output_stream(output, num_channels, buffer_size)
.map(|new_streams| {
let bs = match new_streams.output {
Some(ref out) => out.buffer_size as usize,
None => unreachable!(),
};
*streams = new_streams;
bs
})
.map_err(|ref e| {
println!("Error preparing stream: {}", e);
BuildStreamError::DeviceNotAvailable
})
}
}
}
}
impl Drop for Stream {
fn drop(&mut self) {
self.driver.remove_callback(self.callback_id);
}
}
impl Silence for i16 {
const SILENCE: Self = 0;
}
impl Silence for i32 {
const SILENCE: Self = 0;
}
impl Silence for f32 {
const SILENCE: Self = 0.0;
}
impl Silence for f64 {
const SILENCE: Self = 0.0;
}
impl AsioSample for i16 {
fn to_cpal_sample<T: Sample>(&self) -> T {
T::from(self)
}
fn from_cpal_sample<T: Sample>(t: &T) -> Self {
Sample::from(t)
}
}
impl AsioSample for i32 {
fn to_cpal_sample<T: Sample>(&self) -> T {
let s = (*self >> 16) as i16;
s.to_cpal_sample()
}
fn from_cpal_sample<T: Sample>(t: &T) -> Self {
let s = i16::from_cpal_sample(t);
(s as i32) << 16
}
}
impl AsioSample for f32 {
fn to_cpal_sample<T: Sample>(&self) -> T {
T::from(self)
}
fn from_cpal_sample<T: Sample>(t: &T) -> Self {
Sample::from(t)
}
}
impl AsioSample for f64 {
fn to_cpal_sample<T: Sample>(&self) -> T {
let f = *self as f32;
f.to_cpal_sample()
}
fn from_cpal_sample<T: Sample>(t: &T) -> Self {
let f = f32::from_cpal_sample(t);
f as f64
}
}
fn asio_ns_to_double(val: sys::bindings::asio_import::ASIOTimeStamp) -> f64 {
let two_raised_to_32 = 4294967296.0;
val.lo as f64 + val.hi as f64 * two_raised_to_32
}
/// Asio retrieves system time via `timeGetTime` which returns the time in milliseconds.
fn system_time_to_stream_instant(
system_time: sys::bindings::asio_import::ASIOTimeStamp,
) -> crate::StreamInstant {
let systime_ns = asio_ns_to_double(system_time);
let secs = systime_ns as i64 / 1_000_000_000;
let nanos = (systime_ns as i64 - secs * 1_000_000_000) as u32;
crate::StreamInstant::new(secs, nanos)
}
/// Convert the given duration in frames at the given sample rate to a `std::time::Duration`.
fn frames_to_duration(frames: usize, rate: crate::SampleRate) -> std::time::Duration {
let secsf = frames as f64 / rate.0 as f64;
let secs = secsf as u64;
let nanos = ((secsf - secs as f64) * 1_000_000_000.0) as u32;
std::time::Duration::new(secs, nanos)
}
/// Check whether or not the desired config is supported by the stream.
///
/// Checks sample rate, data type and then finally the number of channels.
fn check_config(
driver: &sys::Driver,
config: &StreamConfig,
sample_format: SampleFormat,
num_asio_channels: u16,
) -> Result<(), BuildStreamError> {
let StreamConfig {
channels,
sample_rate,
buffer_size,
} = config;
// Try and set the sample rate to what the user selected.
let sample_rate = sample_rate.0.into();
if sample_rate != driver.sample_rate().map_err(build_stream_err)? {
if driver
.can_sample_rate(sample_rate)
.map_err(build_stream_err)?
{
driver
.set_sample_rate(sample_rate)
.map_err(build_stream_err)?;
} else {
return Err(BuildStreamError::StreamConfigNotSupported);
}
}
// unsigned formats are not supported by asio
match sample_format {
SampleFormat::I16 | SampleFormat::F32 => (),
SampleFormat::U16 => return Err(BuildStreamError::StreamConfigNotSupported),
}
if *channels > num_asio_channels {
return Err(BuildStreamError::StreamConfigNotSupported);
}
Ok(())
}
/// Cast a byte slice into a mutable slice of desired type.
///
/// Safety: it's up to the caller to ensure that the input slice has valid bit representations.
unsafe fn cast_slice_mut<T>(v: &mut [u8]) -> &mut [T] {
debug_assert!(v.len() % std::mem::size_of::<T>() == 0);
std::slice::from_raw_parts_mut(v.as_mut_ptr() as *mut T, v.len() / std::mem::size_of::<T>())
}
/// Helper function to convert to little endianness.
fn to_le<T: PrimInt>(t: T) -> T {
t.to_le()
}
/// Helper function to convert to big endianness.
fn to_be<T: PrimInt>(t: T) -> T {
t.to_be()
}
/// Helper function to convert from little endianness.
fn from_le<T: PrimInt>(t: T) -> T {
T::from_le(t)
}
/// Helper function to convert from little endianness.
fn from_be<T: PrimInt>(t: T) -> T {
T::from_be(t)
}
/// Shorthand for retrieving the asio buffer slice associated with a channel.
///
/// Safety: it's up to the user to ensure that this function is not called multiple times for the
/// same channel.
unsafe fn asio_channel_slice<T>(
asio_stream: &sys::AsioStream,
buffer_index: usize,
channel_index: usize,
) -> &[T] {
asio_channel_slice_mut(asio_stream, buffer_index, channel_index)
}
/// Shorthand for retrieving the asio buffer slice associated with a channel.
///
/// Safety: it's up to the user to ensure that this function is not called multiple times for the
/// same channel.
unsafe fn asio_channel_slice_mut<T>(
asio_stream: &sys::AsioStream,
buffer_index: usize,
channel_index: usize,
) -> &mut [T] {
let buff_ptr: *mut T =
asio_stream.buffer_infos[channel_index].buffers[buffer_index as usize] as *mut _;
std::slice::from_raw_parts_mut(buff_ptr, asio_stream.buffer_size as usize)
}
fn build_stream_err(e: sys::AsioError) -> BuildStreamError {
match e {
sys::AsioError::NoDrivers | sys::AsioError::HardwareMalfunction => {
BuildStreamError::DeviceNotAvailable
}
sys::AsioError::InvalidInput | sys::AsioError::BadMode => BuildStreamError::InvalidArgument,
err => {
let description = format!("{}", err);
BackendSpecificError { description }.into()
}
}
}