- Shares the `Device`'s `driver` and `asio_streams` `Arc`s with the `Stream`s to ensure they remain valid if the `Host` or `Device` are dropped early. - Ensures that a stream's callback is removed upon `Drop`.
683 lines
25 KiB
Rust
683 lines
25 KiB
Rust
extern crate asio_sys as sys;
|
|
extern crate num_traits;
|
|
|
|
use self::num_traits::PrimInt;
|
|
use super::Device;
|
|
use std;
|
|
use std::sync::atomic::{Ordering, AtomicBool};
|
|
use std::sync::Arc;
|
|
use super::parking_lot::Mutex;
|
|
use BackendSpecificError;
|
|
use BuildStreamError;
|
|
use Format;
|
|
use PauseStreamError;
|
|
use PlayStreamError;
|
|
use SampleFormat;
|
|
use StreamData;
|
|
use UnknownTypeInputBuffer;
|
|
use UnknownTypeOutputBuffer;
|
|
use StreamError;
|
|
|
|
/// Sample types whose constant silent value is known.
|
|
trait Silence {
|
|
const SILENCE: Self;
|
|
}
|
|
|
|
/// Constraints on the interleaved sample buffer format required by the CPAL API.
|
|
trait InterleavedSample: Clone + Copy + Silence {
|
|
fn unknown_type_input_buffer(&[Self]) -> UnknownTypeInputBuffer;
|
|
fn unknown_type_output_buffer(&mut [Self]) -> UnknownTypeOutputBuffer;
|
|
}
|
|
|
|
/// Constraints on the ASIO sample types.
|
|
trait AsioSample: Clone + Copy + Silence + std::ops::Add<Self, Output = Self> {}
|
|
|
|
// Used to keep track of whether or not the current current asio stream buffer requires
|
|
// being silencing before summing audio.
|
|
#[derive(Default)]
|
|
struct SilenceAsioBuffer {
|
|
first: bool,
|
|
second: bool,
|
|
}
|
|
|
|
pub struct Stream {
|
|
playing: Arc<AtomicBool>,
|
|
// Ensure the `Driver` does not terminate until the last stream is dropped.
|
|
driver: Arc<sys::Driver>,
|
|
asio_streams: Arc<Mutex<sys::AsioStreams>>,
|
|
callback_id: sys::CallbackId,
|
|
}
|
|
|
|
impl Stream {
|
|
pub fn play(&self) -> Result<(), PlayStreamError> {
|
|
self.playing.store(true, Ordering::SeqCst);
|
|
Ok(())
|
|
}
|
|
|
|
pub fn pause(&self) -> Result<(), PauseStreamError> {
|
|
self.playing.store(false, Ordering::SeqCst);
|
|
Ok(())
|
|
}
|
|
}
|
|
|
|
impl Device {
|
|
pub fn build_input_stream<D, E>(
|
|
&self,
|
|
format: &Format,
|
|
mut data_callback: D,
|
|
_error_callback: E,
|
|
) -> Result<Stream, BuildStreamError>
|
|
where
|
|
D: FnMut(StreamData) + Send + 'static,
|
|
E: FnMut(StreamError) + Send + 'static
|
|
{
|
|
let stream_type = self.driver.input_data_type().map_err(build_stream_err)?;
|
|
|
|
// Ensure that the desired sample type is supported.
|
|
let data_type = super::device::convert_data_type(&stream_type)
|
|
.ok_or(BuildStreamError::FormatNotSupported)?;
|
|
if format.data_type != data_type {
|
|
return Err(BuildStreamError::FormatNotSupported);
|
|
}
|
|
|
|
let num_channels = format.channels.clone();
|
|
let buffer_size = self.get_or_create_input_stream(format)?;
|
|
let cpal_num_samples = buffer_size * num_channels as usize;
|
|
|
|
// Create the buffer depending on the size of the data type.
|
|
let len_bytes = cpal_num_samples * data_type.sample_size();
|
|
let mut interleaved = vec![0u8; len_bytes];
|
|
|
|
let stream_playing = Arc::new(AtomicBool::new(false));
|
|
let playing = Arc::clone(&stream_playing);
|
|
let asio_streams = self.asio_streams.clone();
|
|
|
|
// Set the input callback.
|
|
// This is most performance critical part of the ASIO bindings.
|
|
let callback_id = self.driver.add_callback(move |buffer_index| unsafe {
|
|
// If not playing return early.
|
|
if !playing.load(Ordering::SeqCst) {
|
|
return
|
|
}
|
|
|
|
// There is 0% chance of lock contention the host only locks when recreating streams.
|
|
let stream_lock = asio_streams.lock();
|
|
let ref asio_stream = match stream_lock.input {
|
|
Some(ref asio_stream) => asio_stream,
|
|
None => return,
|
|
};
|
|
|
|
/// 1. Write from the ASIO buffer to the interleaved CPAL buffer.
|
|
/// 2. Deliver the CPAL buffer to the user callback.
|
|
unsafe fn process_input_callback<A, B, D, F, G>(
|
|
callback: &mut D,
|
|
interleaved: &mut [u8],
|
|
asio_stream: &sys::AsioStream,
|
|
buffer_index: usize,
|
|
from_endianness: F,
|
|
to_cpal_sample: G,
|
|
)
|
|
where
|
|
A: AsioSample,
|
|
B: InterleavedSample,
|
|
D: FnMut(StreamData) + Send + 'static,
|
|
F: Fn(A) -> A,
|
|
G: Fn(A) -> B,
|
|
{
|
|
// 1. Write the ASIO channels to the CPAL buffer.
|
|
let interleaved: &mut [B] = cast_slice_mut(interleaved);
|
|
let n_channels = interleaved.len() / asio_stream.buffer_size as usize;
|
|
for ch_ix in 0..n_channels {
|
|
let asio_channel = asio_channel_slice::<A>(asio_stream, buffer_index, ch_ix);
|
|
for (frame, s_asio) in interleaved.chunks_mut(n_channels).zip(asio_channel) {
|
|
frame[ch_ix] = to_cpal_sample(from_endianness(*s_asio));
|
|
}
|
|
}
|
|
|
|
// 2. Deliver the interleaved buffer to the callback.
|
|
callback(
|
|
StreamData::Input { buffer: B::unknown_type_input_buffer(interleaved) },
|
|
);
|
|
}
|
|
|
|
match (&stream_type, data_type) {
|
|
(&sys::AsioSampleType::ASIOSTInt16LSB, SampleFormat::I16) => {
|
|
process_input_callback::<i16, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
from_le,
|
|
std::convert::identity::<i16>,
|
|
);
|
|
}
|
|
(&sys::AsioSampleType::ASIOSTInt16MSB, SampleFormat::I16) => {
|
|
process_input_callback::<i16, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
from_be,
|
|
std::convert::identity::<i16>,
|
|
);
|
|
}
|
|
|
|
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
|
|
// trait for the `to_le` and `to_be` methods, but this does not support floats.
|
|
(&sys::AsioSampleType::ASIOSTFloat32LSB, SampleFormat::F32) |
|
|
(&sys::AsioSampleType::ASIOSTFloat32MSB, SampleFormat::F32) => {
|
|
process_input_callback::<f32, f32, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
std::convert::identity::<f32>,
|
|
std::convert::identity::<f32>,
|
|
);
|
|
}
|
|
|
|
// TODO: Add support for the following sample formats to CPAL and simplify the
|
|
// `process_output_callback` function above by removing the unnecessary sample
|
|
// conversion function.
|
|
(&sys::AsioSampleType::ASIOSTInt32LSB, SampleFormat::I16) => {
|
|
process_input_callback::<i32, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
from_le,
|
|
|s| (s >> 16) as i16,
|
|
);
|
|
}
|
|
(&sys::AsioSampleType::ASIOSTInt32MSB, SampleFormat::I16) => {
|
|
process_input_callback::<i32, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
from_be,
|
|
|s| (s >> 16) as i16,
|
|
);
|
|
}
|
|
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
|
|
// trait for the `to_le` and `to_be` methods, but this does not support floats.
|
|
(&sys::AsioSampleType::ASIOSTFloat64LSB, SampleFormat::F32) |
|
|
(&sys::AsioSampleType::ASIOSTFloat64MSB, SampleFormat::F32) => {
|
|
process_input_callback::<f64, f32, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
std::convert::identity::<f64>,
|
|
|s| s as f32,
|
|
);
|
|
}
|
|
|
|
unsupported_format_pair => {
|
|
unreachable!("`build_input_stream` should have returned with unsupported \
|
|
format {:?}", unsupported_format_pair)
|
|
}
|
|
}
|
|
});
|
|
|
|
let driver = self.driver.clone();
|
|
let asio_streams = self.asio_streams.clone();
|
|
|
|
// Immediately start the device?
|
|
self.driver.start().map_err(build_stream_err)?;
|
|
|
|
Ok(Stream {
|
|
playing: stream_playing,
|
|
driver,
|
|
asio_streams,
|
|
callback_id,
|
|
})
|
|
}
|
|
|
|
pub fn build_output_stream<D, E>(
|
|
&self,
|
|
format: &Format,
|
|
mut data_callback: D,
|
|
_error_callback: E,
|
|
) -> Result<Stream, BuildStreamError>
|
|
where
|
|
D: FnMut(StreamData) + Send + 'static,
|
|
E: FnMut(StreamError) + Send + 'static,
|
|
{
|
|
let stream_type = self.driver.output_data_type().map_err(build_stream_err)?;
|
|
|
|
// Ensure that the desired sample type is supported.
|
|
let data_type = super::device::convert_data_type(&stream_type)
|
|
.ok_or(BuildStreamError::FormatNotSupported)?;
|
|
if format.data_type != data_type {
|
|
return Err(BuildStreamError::FormatNotSupported);
|
|
}
|
|
|
|
let num_channels = format.channels.clone();
|
|
let buffer_size = self.get_or_create_output_stream(format)?;
|
|
let cpal_num_samples = buffer_size * num_channels as usize;
|
|
|
|
// Create buffers depending on data type.
|
|
let len_bytes = cpal_num_samples * data_type.sample_size();
|
|
let mut interleaved = vec![0u8; len_bytes];
|
|
let mut silence_asio_buffer = SilenceAsioBuffer::default();
|
|
|
|
let stream_playing = Arc::new(AtomicBool::new(false));
|
|
let playing = Arc::clone(&stream_playing);
|
|
let asio_streams = self.asio_streams.clone();
|
|
|
|
let callback_id = self.driver.add_callback(move |buffer_index| unsafe {
|
|
// If not playing, return early.
|
|
if !playing.load(Ordering::SeqCst) {
|
|
return
|
|
}
|
|
|
|
// There is 0% chance of lock contention the host only locks when recreating streams.
|
|
let stream_lock = asio_streams.lock();
|
|
let ref asio_stream = match stream_lock.output {
|
|
Some(ref asio_stream) => asio_stream,
|
|
None => return,
|
|
};
|
|
|
|
// Silence the ASIO buffer that is about to be used.
|
|
//
|
|
// This checks if any other callbacks have already silenced the buffer associated with
|
|
// the current `buffer_index`.
|
|
//
|
|
// If not, we will silence it and set the opposite buffer half to unsilenced.
|
|
let silence = match buffer_index {
|
|
0 if !silence_asio_buffer.first => {
|
|
silence_asio_buffer.first = true;
|
|
silence_asio_buffer.second = false;
|
|
true
|
|
}
|
|
0 => false,
|
|
1 if !silence_asio_buffer.second => {
|
|
silence_asio_buffer.second = true;
|
|
silence_asio_buffer.first = false;
|
|
true
|
|
}
|
|
1 => false,
|
|
_ => unreachable!("ASIO uses a double-buffer so there should only be 2"),
|
|
};
|
|
|
|
/// 1. Render the given callback to the given buffer of interleaved samples.
|
|
/// 2. If required, silence the ASIO buffer.
|
|
/// 3. Finally, write the interleaved data to the non-interleaved ASIO buffer,
|
|
/// performing endianness conversions as necessary.
|
|
unsafe fn process_output_callback<A, B, D, F, G>(
|
|
callback: &mut D,
|
|
interleaved: &mut [u8],
|
|
silence_asio_buffer: bool,
|
|
asio_stream: &sys::AsioStream,
|
|
buffer_index: usize,
|
|
to_asio_sample: F,
|
|
to_endianness: G,
|
|
)
|
|
where
|
|
A: InterleavedSample,
|
|
B: AsioSample,
|
|
D: FnMut(StreamData) + Send + 'static,
|
|
F: Fn(A) -> B,
|
|
G: Fn(B) -> B,
|
|
{
|
|
// 1. Render interleaved buffer from callback.
|
|
let interleaved: &mut [A] = cast_slice_mut(interleaved);
|
|
let buffer = A::unknown_type_output_buffer(interleaved);
|
|
callback(StreamData::Output { buffer });
|
|
|
|
// 2. Silence ASIO channels if necessary.
|
|
let n_channels = interleaved.len() / asio_stream.buffer_size as usize;
|
|
if silence_asio_buffer {
|
|
for ch_ix in 0..n_channels {
|
|
let asio_channel =
|
|
asio_channel_slice_mut::<B>(asio_stream, buffer_index, ch_ix);
|
|
asio_channel.iter_mut().for_each(|s| *s = to_endianness(B::SILENCE));
|
|
}
|
|
}
|
|
|
|
// 3. Write interleaved samples to ASIO channels, one channel at a time.
|
|
for ch_ix in 0..n_channels {
|
|
let asio_channel =
|
|
asio_channel_slice_mut::<B>(asio_stream, buffer_index, ch_ix);
|
|
for (frame, s_asio) in interleaved.chunks(n_channels).zip(asio_channel) {
|
|
*s_asio = *s_asio + to_endianness(to_asio_sample(frame[ch_ix]));
|
|
}
|
|
}
|
|
}
|
|
|
|
match (data_type, &stream_type) {
|
|
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt16LSB) => {
|
|
process_output_callback::<i16, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
std::convert::identity::<i16>,
|
|
to_le,
|
|
);
|
|
}
|
|
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt16MSB) => {
|
|
process_output_callback::<i16, i16, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
std::convert::identity::<i16>,
|
|
to_be,
|
|
);
|
|
}
|
|
|
|
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
|
|
// trait for the `to_le` and `to_be` methods, but this does not support floats.
|
|
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat32LSB) |
|
|
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat32MSB) => {
|
|
process_output_callback::<f32, f32, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
std::convert::identity::<f32>,
|
|
std::convert::identity::<f32>,
|
|
);
|
|
}
|
|
|
|
// TODO: Add support for the following sample formats to CPAL and simplify the
|
|
// `process_output_callback` function above by removing the unnecessary sample
|
|
// conversion function.
|
|
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt32LSB) => {
|
|
process_output_callback::<i16, i32, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
|s| (s as i32) << 16,
|
|
to_le,
|
|
);
|
|
}
|
|
(SampleFormat::I16, &sys::AsioSampleType::ASIOSTInt32MSB) => {
|
|
process_output_callback::<i16, i32, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
|s| (s as i32) << 16,
|
|
to_be,
|
|
);
|
|
}
|
|
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
|
|
// trait for the `to_le` and `to_be` methods, but this does not support floats.
|
|
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat64LSB) |
|
|
(SampleFormat::F32, &sys::AsioSampleType::ASIOSTFloat64MSB) => {
|
|
process_output_callback::<f32, f64, _, _, _>(
|
|
&mut data_callback,
|
|
&mut interleaved,
|
|
silence,
|
|
asio_stream,
|
|
buffer_index as usize,
|
|
|s| s as f64,
|
|
std::convert::identity::<f64>,
|
|
);
|
|
}
|
|
|
|
unsupported_format_pair => {
|
|
unreachable!("`build_output_stream` should have returned with unsupported \
|
|
format {:?}", unsupported_format_pair)
|
|
}
|
|
}
|
|
});
|
|
|
|
let driver = self.driver.clone();
|
|
let asio_streams = self.asio_streams.clone();
|
|
|
|
// Immediately start the device?
|
|
self.driver.start().map_err(build_stream_err)?;
|
|
|
|
Ok(Stream {
|
|
playing: stream_playing,
|
|
driver,
|
|
asio_streams,
|
|
callback_id,
|
|
})
|
|
}
|
|
|
|
/// Create a new CPAL Input Stream.
|
|
///
|
|
/// If there is no existing ASIO Input Stream it will be created.
|
|
///
|
|
/// On success, the buffer size of the stream is returned.
|
|
fn get_or_create_input_stream(
|
|
&self,
|
|
format: &Format,
|
|
) -> Result<usize, BuildStreamError> {
|
|
match self.default_input_format() {
|
|
Ok(f) => {
|
|
let num_asio_channels = f.channels;
|
|
check_format(&self.driver, format, num_asio_channels)
|
|
},
|
|
Err(_) => Err(BuildStreamError::FormatNotSupported),
|
|
}?;
|
|
let num_channels = format.channels as usize;
|
|
let ref mut streams = *self.asio_streams.lock();
|
|
// Either create a stream if thers none or had back the
|
|
// size of the current one.
|
|
match streams.input {
|
|
Some(ref input) => Ok(input.buffer_size as usize),
|
|
None => {
|
|
let output = streams.output.take();
|
|
self.driver
|
|
.prepare_input_stream(output, num_channels)
|
|
.map(|new_streams| {
|
|
let bs = match new_streams.input {
|
|
Some(ref inp) => inp.buffer_size as usize,
|
|
None => unreachable!(),
|
|
};
|
|
*streams = new_streams;
|
|
bs
|
|
}).map_err(|ref e| {
|
|
println!("Error preparing stream: {}", e);
|
|
BuildStreamError::DeviceNotAvailable
|
|
})
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Create a new CPAL Output Stream.
|
|
///
|
|
/// If there is no existing ASIO Output Stream it will be created.
|
|
fn get_or_create_output_stream(
|
|
&self,
|
|
format: &Format,
|
|
) -> Result<usize, BuildStreamError> {
|
|
match self.default_output_format() {
|
|
Ok(f) => {
|
|
let num_asio_channels = f.channels;
|
|
check_format(&self.driver, format, num_asio_channels)
|
|
},
|
|
Err(_) => Err(BuildStreamError::FormatNotSupported),
|
|
}?;
|
|
let num_channels = format.channels as usize;
|
|
let ref mut streams = *self.asio_streams.lock();
|
|
// Either create a stream if thers none or had back the
|
|
// size of the current one.
|
|
match streams.output {
|
|
Some(ref output) => Ok(output.buffer_size as usize),
|
|
None => {
|
|
let output = streams.output.take();
|
|
self.driver
|
|
.prepare_output_stream(output, num_channels)
|
|
.map(|new_streams| {
|
|
let bs = match new_streams.output {
|
|
Some(ref out) => out.buffer_size as usize,
|
|
None => unreachable!(),
|
|
};
|
|
*streams = new_streams;
|
|
bs
|
|
}).map_err(|ref e| {
|
|
println!("Error preparing stream: {}", e);
|
|
BuildStreamError::DeviceNotAvailable
|
|
})
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
impl Drop for Stream {
|
|
fn drop(&mut self) {
|
|
self.driver.remove_callback(self.callback_id);
|
|
}
|
|
}
|
|
|
|
impl Silence for i16 {
|
|
const SILENCE: Self = 0;
|
|
}
|
|
|
|
impl Silence for i32 {
|
|
const SILENCE: Self = 0;
|
|
}
|
|
|
|
impl Silence for f32 {
|
|
const SILENCE: Self = 0.0;
|
|
}
|
|
|
|
impl Silence for f64 {
|
|
const SILENCE: Self = 0.0;
|
|
}
|
|
|
|
impl InterleavedSample for i16 {
|
|
fn unknown_type_input_buffer(buffer: &[Self]) -> UnknownTypeInputBuffer {
|
|
UnknownTypeInputBuffer::I16(::InputBuffer { buffer })
|
|
}
|
|
|
|
fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer {
|
|
UnknownTypeOutputBuffer::I16(::OutputBuffer { buffer })
|
|
}
|
|
}
|
|
|
|
impl InterleavedSample for f32 {
|
|
fn unknown_type_input_buffer(buffer: &[Self]) -> UnknownTypeInputBuffer {
|
|
UnknownTypeInputBuffer::F32(::InputBuffer { buffer })
|
|
}
|
|
|
|
fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer {
|
|
UnknownTypeOutputBuffer::F32(::OutputBuffer { buffer })
|
|
}
|
|
}
|
|
|
|
impl AsioSample for i16 {}
|
|
|
|
impl AsioSample for i32 {}
|
|
|
|
impl AsioSample for f32 {}
|
|
|
|
impl AsioSample for f64 {}
|
|
|
|
/// Check whether or not the desired format is supported by the stream.
|
|
///
|
|
/// Checks sample rate, data type and then finally the number of channels.
|
|
fn check_format(
|
|
driver: &sys::Driver,
|
|
format: &Format,
|
|
num_asio_channels: u16,
|
|
) -> Result<(), BuildStreamError> {
|
|
let Format {
|
|
channels,
|
|
sample_rate,
|
|
data_type,
|
|
} = format;
|
|
// Try and set the sample rate to what the user selected.
|
|
let sample_rate = sample_rate.0.into();
|
|
if sample_rate != driver.sample_rate().map_err(build_stream_err)? {
|
|
if driver.can_sample_rate(sample_rate).map_err(build_stream_err)? {
|
|
driver
|
|
.set_sample_rate(sample_rate)
|
|
.map_err(build_stream_err)?;
|
|
} else {
|
|
return Err(BuildStreamError::FormatNotSupported);
|
|
}
|
|
}
|
|
// unsigned formats are not supported by asio
|
|
match data_type {
|
|
SampleFormat::I16 | SampleFormat::F32 => (),
|
|
SampleFormat::U16 => return Err(BuildStreamError::FormatNotSupported),
|
|
}
|
|
if *channels > num_asio_channels {
|
|
return Err(BuildStreamError::FormatNotSupported);
|
|
}
|
|
Ok(())
|
|
}
|
|
|
|
/// Cast a byte slice into a mutable slice of desired type.
|
|
///
|
|
/// Safety: it's up to the caller to ensure that the input slice has valid bit representations.
|
|
unsafe fn cast_slice_mut<T>(v: &mut [u8]) -> &mut [T] {
|
|
debug_assert!(v.len() % std::mem::size_of::<T>() == 0);
|
|
std::slice::from_raw_parts_mut(v.as_mut_ptr() as *mut T, v.len() / std::mem::size_of::<T>())
|
|
}
|
|
|
|
/// Helper function to convert to little endianness.
|
|
fn to_le<T: PrimInt>(t: T) -> T {
|
|
t.to_le()
|
|
}
|
|
|
|
/// Helper function to convert to big endianness.
|
|
fn to_be<T: PrimInt>(t: T) -> T {
|
|
t.to_be()
|
|
}
|
|
|
|
/// Helper function to convert from little endianness.
|
|
fn from_le<T: PrimInt>(t: T) -> T {
|
|
T::from_le(t)
|
|
}
|
|
|
|
/// Helper function to convert from little endianness.
|
|
fn from_be<T: PrimInt>(t: T) -> T {
|
|
T::from_be(t)
|
|
}
|
|
|
|
/// Shorthand for retrieving the asio buffer slice associated with a channel.
|
|
///
|
|
/// Safety: it's up to the user to ensure that this function is not called multiple times for the
|
|
/// same channel.
|
|
unsafe fn asio_channel_slice<T>(
|
|
asio_stream: &sys::AsioStream,
|
|
buffer_index: usize,
|
|
channel_index: usize,
|
|
) -> &[T] {
|
|
asio_channel_slice_mut(asio_stream, buffer_index, channel_index)
|
|
}
|
|
|
|
/// Shorthand for retrieving the asio buffer slice associated with a channel.
|
|
///
|
|
/// Safety: it's up to the user to ensure that this function is not called multiple times for the
|
|
/// same channel.
|
|
unsafe fn asio_channel_slice_mut<T>(
|
|
asio_stream: &sys::AsioStream,
|
|
buffer_index: usize,
|
|
channel_index: usize,
|
|
) -> &mut [T] {
|
|
let buff_ptr: *mut T = asio_stream
|
|
.buffer_infos[channel_index]
|
|
.buffers[buffer_index as usize]
|
|
as *mut _;
|
|
std::slice::from_raw_parts_mut(buff_ptr, asio_stream.buffer_size as usize)
|
|
}
|
|
|
|
fn build_stream_err(e: sys::AsioError) -> BuildStreamError {
|
|
match e {
|
|
sys::AsioError::NoDrivers |
|
|
sys::AsioError::HardwareMalfunction => BuildStreamError::DeviceNotAvailable,
|
|
sys::AsioError::InvalidInput |
|
|
sys::AsioError::BadMode => BuildStreamError::InvalidArgument,
|
|
err => {
|
|
let description = format!("{}", err);
|
|
BackendSpecificError { description }.into()
|
|
}
|
|
}
|
|
}
|