Merge pull request #121 from tomaka/futures

Draft for switching to futures
This commit is contained in:
tomaka 2016-08-12 20:43:09 +02:00 committed by GitHub
commit a431c03f42
10 changed files with 845 additions and 477 deletions

View File

@ -1,19 +1,20 @@
[package] [package]
name = "cpal" name = "cpal"
version = "0.2.12" version = "0.3.0"
authors = ["Pierre Krieger <pierre.krieger1708@gmail.com>"] authors = ["The CPAL contributors", "Pierre Krieger <pierre.krieger1708@gmail.com>"]
description = "Cross-platform audio playing library in pure Rust." description = "Low-level cross-platform audio playing library in pure Rust."
repository = "https://github.com/tomaka/cpal" repository = "https://github.com/tomaka/cpal"
documentation = "http://tomaka.github.io/cpal/" documentation = "http://tomaka.github.io/cpal/"
license = "Apache-2.0" license = "Apache-2.0"
keywords = ["audio", "sound"] keywords = ["audio", "sound"]
[dependencies] [dependencies]
futures = "0.1.0"
libc = "0.2" libc = "0.2"
lazy_static = "0.2" lazy_static = "0.2"
winapi = "0.2.8" winapi = "0.2.8"
ole32-sys = "0.2" ole32-sys = "0.2"
kernel32-sys = "0.2"
[target.arm-unknown-linux-gnueabihf.dependencies.alsa-sys] [target.arm-unknown-linux-gnueabihf.dependencies.alsa-sys]
version = "0" version = "0"
@ -32,7 +33,4 @@ version = "0"
path = "alsa-sys" path = "alsa-sys"
[target.x86_64-apple-darwin.dependencies] [target.x86_64-apple-darwin.dependencies]
coreaudio-rs = "~0.5.0" coreaudio-rs = "0.6"
[dev-dependencies]
vorbis = "0"

View File

@ -1,10 +1,13 @@
# CPAL - Cross-platform audio library # CPAL - Cross-platform audio library
Audio player in pure Rust. Works only on win32 (WASAPI) and linux (ALSA) for the moment.
[Documentation](http://tomaka.github.io/cpal/) [Documentation](http://tomaka.github.io/cpal/)
```toml ```toml
[dependencies] [dependencies]
cpal = "0.1.0" cpal = "0.3.0"
``` ```
Low-level library for audio playback in pure Rust.
This library allows you to open a channel with the audio device of the user's machine, and
send PCM data to it.

View File

@ -1,16 +1,25 @@
extern crate cpal; extern crate cpal;
extern crate futures;
use futures::Future;
use futures::stream::Stream;
fn main() { fn main() {
let endpoint = cpal::get_default_endpoint().expect("Failed to get default endpoint"); let endpoint = cpal::get_default_endpoint().expect("Failed to get default endpoint");
let format = endpoint.get_supported_formats_list().unwrap().next().expect("Failed to get endpoint format"); let format = endpoint.get_supported_formats_list().unwrap().next().expect("Failed to get endpoint format");
let mut channel = cpal::Voice::new(&endpoint, &format).expect("Failed to create a channel");
let event_loop = cpal::EventLoop::new();
let (mut voice, stream) = cpal::Voice::new(&endpoint, &format, &event_loop).expect("Failed to create a voice");
// Produce a sinusoid of maximum amplitude. // Produce a sinusoid of maximum amplitude.
let mut data_source = (0u64..).map(|t| t as f32 * 440.0 * 2.0 * 3.141592 / format.samples_rate.0 as f32) // 440 Hz let samples_rate = format.samples_rate.0 as f32;
.map(|t| t.sin()); let mut data_source = (0u64..).map(move |t| t as f32 * 440.0 * 2.0 * 3.141592 / samples_rate) // 440 Hz
.map(move |t| t.sin());
loop { voice.play();
match channel.append_data(32768) { stream.for_each(move |buffer| -> Result<_, ()> {
match buffer {
cpal::UnknownTypeBuffer::U16(mut buffer) => { cpal::UnknownTypeBuffer::U16(mut buffer) => {
for (sample, value) in buffer.chunks_mut(format.channels.len()).zip(&mut data_source) { for (sample, value) in buffer.chunks_mut(format.channels.len()).zip(&mut data_source) {
let value = ((value * 0.5 + 0.5) * std::u16::MAX as f32) as u16; let value = ((value * 0.5 + 0.5) * std::u16::MAX as f32) as u16;
@ -30,8 +39,10 @@ fn main() {
for out in sample.iter_mut() { *out = value; } for out in sample.iter_mut() { *out = value; }
} }
}, },
} };
channel.play(); Ok(())
} }).forget();
event_loop.run();
} }

View File

@ -1,7 +1,5 @@
extern crate cpal; extern crate cpal;
use cpal::*;
fn main() { fn main() {
let endpoints = cpal::get_endpoints_list(); let endpoints = cpal::get_endpoints_list();

View File

@ -9,10 +9,16 @@ use Format;
use FormatsEnumerationError; use FormatsEnumerationError;
use SampleFormat; use SampleFormat;
use SamplesRate; use SamplesRate;
use UnknownTypeBuffer;
use std::{ffi, cmp, iter, mem, ptr}; use std::{ffi, cmp, iter, mem, ptr};
use std::vec::IntoIter as VecIntoIter; use std::vec::IntoIter as VecIntoIter;
use std::sync::Mutex; use std::sync::{Arc, Mutex};
use futures::Poll;
use futures::Task;
use futures::TaskHandle;
use futures::stream::Stream;
pub type SupportedFormatsIterator = VecIntoIter<Format>; pub type SupportedFormatsIterator = VecIntoIter<Format>;
@ -174,18 +180,270 @@ impl Endpoint {
} }
} }
pub struct Voice { pub struct EventLoop {
channel: Mutex<*mut alsa::snd_pcm_t>, inner: Arc<EventLoopInner>,
num_channels: u16,
buffer_len: usize, // number of samples that can fit in the buffer
period_len: usize, // minimum number of samples to put in the buffer
} }
pub struct Buffer<'a, T> { struct EventLoopInner {
channel: &'a mut Voice, // Descriptors that we are currently waiting upon. This member is always locked while `run()`
// is executed, ie. most of the time.
//
// Note that for `current_wait`, the first element of `descriptors` is always
// `pending_wait_signal`. Therefore the length of `descriptors` is always one more than
// `voices`.
current_wait: Mutex<PollDescriptors>,
// Since we can't add elements to `current_wait` (as it's locked), we add them to
// `pending_wait`. Once that's done, we signal `pending_wait_signal` so that the `run()`
// function can pause and add the content of `pending_wait` to `current_wait`.
pending_wait: Mutex<PollDescriptors>,
// A file descriptor opened with `eventfd`. Always the first element
// of `current_wait.descriptors`. Should be notified when an element is added
// to `pending_wait` so that the current wait can stop and take the pending wait into
// account.
pending_wait_signal: libc::c_int,
}
struct PollDescriptors {
// Descriptors to wait for.
descriptors: Vec<libc::pollfd>,
// List of voices that are written in `descriptors`.
voices: Vec<Arc<VoiceInner>>,
}
unsafe impl Send for EventLoopInner {}
unsafe impl Sync for EventLoopInner {}
impl Drop for EventLoopInner {
fn drop(&mut self) {
unsafe {
libc::close(self.pending_wait_signal);
}
}
}
impl EventLoop {
#[inline]
pub fn new() -> EventLoop {
let pending_wait_signal = unsafe { libc::eventfd(0, 0) };
EventLoop {
inner: Arc::new(EventLoopInner {
current_wait: Mutex::new(PollDescriptors {
descriptors: vec![libc::pollfd {
fd: pending_wait_signal,
events: libc::POLLIN,
revents: 0,
}],
voices: Vec::new(),
}),
pending_wait: Mutex::new(PollDescriptors {
descriptors: Vec::new(),
voices: Vec::new(),
}),
pending_wait_signal: pending_wait_signal,
})
}
}
#[inline]
pub fn run(&self) {
unsafe {
let mut current_wait = self.inner.current_wait.lock().unwrap();
loop {
let ret = libc::poll(current_wait.descriptors.as_mut_ptr(),
current_wait.descriptors.len() as libc::nfds_t,
-1 /* infinite */);
assert!(ret >= 0, "poll() failed");
if ret == 0 {
continue;
}
// If the `pending_wait_signal` was signaled, add the pending waits to
// the current waits.
if current_wait.descriptors[0].revents != 0 {
current_wait.descriptors[0].revents = 0;
let mut pending = self.inner.pending_wait.lock().unwrap();
current_wait.descriptors.append(&mut pending.descriptors);
current_wait.voices.append(&mut pending.voices);
// Emptying the signal.
let mut out = 0u64;
let ret = libc::read(self.inner.pending_wait_signal,
&mut out as *mut u64 as *mut _, 8);
assert_eq!(ret, 8);
}
// Check each individual descriptor for events.
let mut i_voice = 0;
let mut i_descriptor = 1;
while i_voice < current_wait.voices.len() {
let mut revent = mem::uninitialized();
{
let channel = *current_wait.voices[i_voice].channel.lock().unwrap();
let num_descriptors = current_wait.voices[i_voice].num_descriptors as libc::c_uint;
check_errors(alsa::snd_pcm_poll_descriptors_revents(channel, current_wait.descriptors
.as_mut_ptr().offset(i_descriptor),
num_descriptors, &mut revent)).unwrap();
}
if (revent as libc::c_short & libc::POLLOUT) != 0 {
let scheduled = current_wait.voices[i_voice].scheduled.lock().unwrap().take();
if let Some(scheduled) = scheduled {
scheduled.notify();
}
for _ in 0 .. current_wait.voices[i_voice].num_descriptors {
current_wait.descriptors.remove(i_descriptor as usize);
}
current_wait.voices.remove(i_voice);
} else {
i_descriptor += current_wait.voices[i_voice].num_descriptors as isize;
i_voice += 1;
}
}
}
}
}
}
pub struct Voice;
pub struct Buffer<T> {
inner: Arc<VoiceInner>,
buffer: Vec<T>, buffer: Vec<T>,
} }
pub struct SamplesStream {
inner: Arc<VoiceInner>,
}
struct VoiceInner {
// The event loop used to create the voice.
event_loop: Arc<EventLoopInner>,
// The ALSA channel.
channel: Mutex<*mut alsa::snd_pcm_t>,
// When converting between file descriptors and `snd_pcm_t`, this is the number of
// file descriptors that this `snd_pcm_t` uses.
num_descriptors: usize,
// Format of the samples.
sample_format: SampleFormat,
// Number of channels, ie. number of samples per frame.
num_channels: u16,
// Number of samples that can fit in the buffer.
buffer_len: usize,
// Minimum number of samples to put in the buffer.
period_len: usize,
// If `Some`, something previously called `schedule` on the stream.
scheduled: Mutex<Option<TaskHandle>>,
}
unsafe impl Send for VoiceInner {}
unsafe impl Sync for VoiceInner {}
impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
fn poll(&mut self, _: &mut Task) -> Poll<Option<Self::Item>, Self::Error> {
// Determine the number of samples that are available to write.
let available = {
let channel = self.inner.channel.lock().expect("could not lock channel");
let available = unsafe { alsa::snd_pcm_avail(*channel) }; // TODO: what about snd_pcm_avail_update?
if available == -32 {
// buffer underrun
self.inner.buffer_len
} else if available < 0 {
check_errors(available as libc::c_int).expect("buffer is not available");
unreachable!()
} else {
(available * self.inner.num_channels as alsa::snd_pcm_sframes_t) as usize
}
};
// If we don't have one period ready, return `NotReady`.
if available < self.inner.period_len {
return Poll::NotReady;
}
// We now sure that we're ready to write data.
match self.inner.sample_format {
SampleFormat::I16 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Poll::Ok(Some(UnknownTypeBuffer::I16(::Buffer { target: Some(buffer) })))
},
SampleFormat::U16 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Poll::Ok(Some(UnknownTypeBuffer::U16(::Buffer { target: Some(buffer) })))
},
SampleFormat::F32 => {
let buffer = Buffer {
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(available).collect(),
inner: self.inner.clone(),
};
Poll::Ok(Some(UnknownTypeBuffer::F32(::Buffer { target: Some(buffer) })))
},
}
}
#[inline]
fn schedule(&mut self, task: &mut Task) {
unsafe {
let channel = self.inner.channel.lock().unwrap();
// We start by filling `scheduled`.
*self.inner.scheduled.lock().unwrap() = Some(task.handle().clone());
// In this function we turn the `snd_pcm_t` into a collection of file descriptors.
// And we add these descriptors to `event_loop.pending_wait.descriptors`.
let mut pending_wait = self.inner.event_loop.pending_wait.lock().unwrap();
pending_wait.descriptors.reserve(self.inner.num_descriptors);
let len = pending_wait.descriptors.len();
let filled = alsa::snd_pcm_poll_descriptors(*channel,
pending_wait.descriptors.as_mut_ptr()
.offset(len as isize),
self.inner.num_descriptors as libc::c_uint);
debug_assert_eq!(filled, self.inner.num_descriptors as libc::c_int);
pending_wait.descriptors.set_len(len + self.inner.num_descriptors);
// We also fill `voices`.
pending_wait.voices.push(self.inner.clone());
// Now that `pending_wait` received additional descriptors, we signal the event
// so that our event loops can pick it up.
drop(pending_wait);
let buf = 1u64;
let wret = libc::write(self.inner.event_loop.pending_wait_signal,
&buf as *const u64 as *const _, 8);
assert!(wret == 8);
}
}
}
/// Wrapper around `hw_params`. /// Wrapper around `hw_params`.
struct HwParams(*mut alsa::snd_pcm_hw_params_t); struct HwParams(*mut alsa::snd_pcm_hw_params_t);
@ -208,13 +466,15 @@ impl Drop for HwParams {
} }
impl Voice { impl Voice {
pub fn new(endpoint: &Endpoint, format: &Format) -> Result<Voice, CreationError> { pub fn new(endpoint: &Endpoint, format: &Format, event_loop: &EventLoop)
-> Result<(Voice, SamplesStream), CreationError>
{
unsafe { unsafe {
let name = ffi::CString::new(endpoint.0.clone()).expect("unable to clone endpoint"); let name = ffi::CString::new(endpoint.0.clone()).expect("unable to clone endpoint");
let mut playback_handle = mem::uninitialized(); let mut playback_handle = mem::uninitialized();
match alsa::snd_pcm_open(&mut playback_handle, name.as_ptr(), match alsa::snd_pcm_open(&mut playback_handle, name.as_ptr(),
alsa::SND_PCM_STREAM_PLAYBACK, alsa::SND_PCM_NONBLOCK) alsa::SND_PCM_STREAM_PLAYBACK, 0)
{ {
-16 /* determined empirically */ => return Err(CreationError::DeviceNotAvailable), -16 /* determined empirically */ => return Err(CreationError::DeviceNotAvailable),
e => check_errors(e).expect("Device unavailable") e => check_errors(e).expect("Device unavailable")
@ -233,8 +493,17 @@ impl Voice {
check_errors(alsa::snd_pcm_hw_params_set_format(playback_handle, hw_params.0, data_type)).expect("format could not be set"); check_errors(alsa::snd_pcm_hw_params_set_format(playback_handle, hw_params.0, data_type)).expect("format could not be set");
check_errors(alsa::snd_pcm_hw_params_set_rate(playback_handle, hw_params.0, format.samples_rate.0 as libc::c_uint, 0)).expect("sample rate could not be set"); check_errors(alsa::snd_pcm_hw_params_set_rate(playback_handle, hw_params.0, format.samples_rate.0 as libc::c_uint, 0)).expect("sample rate could not be set");
check_errors(alsa::snd_pcm_hw_params_set_channels(playback_handle, hw_params.0, format.channels.len() as libc::c_uint)).expect("channel count could not be set"); check_errors(alsa::snd_pcm_hw_params_set_channels(playback_handle, hw_params.0, format.channels.len() as libc::c_uint)).expect("channel count could not be set");
let mut max_buffer_size = format.samples_rate.0 as alsa::snd_pcm_uframes_t / format.channels.len() as alsa::snd_pcm_uframes_t / 5; // 200ms of buffer
check_errors(alsa::snd_pcm_hw_params_set_buffer_size_max(playback_handle, hw_params.0, &mut max_buffer_size)).unwrap();
check_errors(alsa::snd_pcm_hw_params(playback_handle, hw_params.0)).expect("hardware params could not be set"); check_errors(alsa::snd_pcm_hw_params(playback_handle, hw_params.0)).expect("hardware params could not be set");
let mut sw_params = mem::uninitialized(); // TODO: RAII
check_errors(alsa::snd_pcm_sw_params_malloc(&mut sw_params)).unwrap();
check_errors(alsa::snd_pcm_sw_params_current(playback_handle, sw_params)).unwrap();
check_errors(alsa::snd_pcm_sw_params_set_avail_min(playback_handle, sw_params, 4096)).unwrap();
check_errors(alsa::snd_pcm_sw_params_set_start_threshold(playback_handle, sw_params, 0)).unwrap();
check_errors(alsa::snd_pcm_sw_params(playback_handle, sw_params)).unwrap();
check_errors(alsa::snd_pcm_prepare(playback_handle)).expect("could not get playback handle"); check_errors(alsa::snd_pcm_prepare(playback_handle)).expect("could not get playback handle");
let (buffer_len, period_len) = { let (buffer_len, period_len) = {
@ -247,36 +516,26 @@ impl Voice {
(buffer, period) (buffer, period)
}; };
Ok(Voice { let num_descriptors = {
let num_descriptors = alsa::snd_pcm_poll_descriptors_count(playback_handle);
debug_assert!(num_descriptors >= 1);
num_descriptors as usize
};
let samples_stream_inner = Arc::new(VoiceInner {
event_loop: event_loop.inner.clone(),
channel: Mutex::new(playback_handle), channel: Mutex::new(playback_handle),
sample_format: format.data_type,
num_descriptors: num_descriptors,
num_channels: format.channels.len() as u16, num_channels: format.channels.len() as u16,
buffer_len: buffer_len, buffer_len: buffer_len,
period_len: period_len, period_len: period_len,
}) scheduled: Mutex::new(None),
} });
}
pub fn append_data<'a, T>(&'a mut self, max_elements: usize) -> Buffer<'a, T> where T: Clone { Ok((Voice, SamplesStream {
let available = { inner: samples_stream_inner
let channel = self.channel.lock().expect("could not lock channel"); }))
let available = unsafe { alsa::snd_pcm_avail(*channel) };
if available == -32 {
// buffer underrun
self.buffer_len
} else if available < 0 {
check_errors(available as libc::c_int).expect("buffer is not available");
unreachable!()
} else {
(available * self.num_channels as alsa::snd_pcm_sframes_t) as usize
}
};
let elements = cmp::min(available, max_elements);
Buffer {
channel: self,
buffer: iter::repeat(unsafe { mem::uninitialized() }).take(elements).collect(),
} }
} }
@ -290,42 +549,9 @@ impl Voice {
pub fn pause(&mut self) { pub fn pause(&mut self) {
unimplemented!() unimplemented!()
} }
#[inline]
pub fn get_period(&self) -> usize {
self.period_len
}
pub fn get_pending_samples(&self) -> usize {
let available = {
let channel = self.channel.lock().expect("could not lock channel");
let available = unsafe { alsa::snd_pcm_avail(*channel) };
if available == -32 {
self.buffer_len as alsa::snd_pcm_sframes_t // buffer underrun
} else if available < 0 {
check_errors(available as libc::c_int).expect("could not write to buffer");
unreachable!()
} else {
available * self.num_channels as alsa::snd_pcm_sframes_t
}
};
self.buffer_len - available as usize
}
pub fn underflowed(&self) -> bool {
let channel = self.channel.lock().expect("channel underflow");
let available = unsafe { alsa::snd_pcm_avail(*channel) };
available == -32
}
} }
unsafe impl Send for Voice {} impl Drop for VoiceInner {
unsafe impl Sync for Voice {}
impl Drop for Voice {
#[inline] #[inline]
fn drop(&mut self) { fn drop(&mut self) {
unsafe { unsafe {
@ -334,9 +560,9 @@ impl Drop for Voice {
} }
} }
impl<'a, T> Buffer<'a, T> { impl<T> Buffer<T> {
#[inline] #[inline]
pub fn get_buffer<'b>(&'b mut self) -> &'b mut [T] { pub fn get_buffer(&mut self) -> &mut [T] {
&mut self.buffer &mut self.buffer
} }
@ -346,9 +572,9 @@ impl<'a, T> Buffer<'a, T> {
} }
pub fn finish(self) { pub fn finish(self) {
let to_write = (self.buffer.len() / self.channel.num_channels as usize) let to_write = (self.buffer.len() / self.inner.num_channels as usize)
as alsa::snd_pcm_uframes_t; as alsa::snd_pcm_uframes_t;
let channel = self.channel.channel.lock().expect("Buffer channel lock failed"); let channel = self.inner.channel.lock().expect("Buffer channel lock failed");
unsafe { unsafe {
loop { loop {

View File

@ -1,20 +1,21 @@
extern crate coreaudio; extern crate coreaudio;
extern crate libc; extern crate libc;
use std::sync::mpsc::{channel, Sender, Receiver};
use std::sync::{Arc, Mutex};
use std::sync::atomic::{AtomicUsize, Ordering};
use std::cell::RefCell;
use std::mem;
use std::cmp;
use std::marker::PhantomData;
use CreationError; use CreationError;
use Format; use Format;
use FormatsEnumerationError; use FormatsEnumerationError;
use Sample;
use SampleFormat; use SampleFormat;
use SamplesRate; use SamplesRate;
use ChannelPosition; use ChannelPosition;
use UnknownTypeBuffer;
use futures::{Poll, Task, TaskHandle};
use futures::stream::Stream;
use std::sync::{Arc, Mutex};
use self::coreaudio::audio_unit::AudioUnit;
use self::coreaudio::audio_unit::render_callback::{self, data};
mod enumerate; mod enumerate;
@ -22,9 +23,6 @@ pub use self::enumerate::{EndpointsIterator,
SupportedFormatsIterator, SupportedFormatsIterator,
get_default_endpoint}; get_default_endpoint};
use self::coreaudio::audio_unit::{AudioUnit, IOType};
use self::coreaudio::audio_unit::render_callback::{self, data};
#[derive(Clone, PartialEq, Eq)] #[derive(Clone, PartialEq, Eq)]
pub struct Endpoint; pub struct Endpoint;
@ -44,36 +42,41 @@ impl Endpoint {
} }
} }
pub struct Buffer<'a, T: 'a> { pub struct EventLoop;
samples_sender: Sender<(Vec<f32>, NumChannels)>, impl EventLoop {
samples: Vec<T>, #[inline]
num_channels: NumChannels, pub fn new() -> EventLoop { EventLoop }
marker: PhantomData<&'a T>, #[inline]
pending_samples: Arc<AtomicUsize> pub fn run(&self) { loop {} }
} }
impl<'a, T> Buffer<'a, T> { pub struct Buffer<T> {
args: render_callback::Args<data::NonInterleaved<T>>,
buffer: Vec<T>,
}
impl<T> Buffer<T> where T: Sample {
#[inline] #[inline]
pub fn get_buffer<'b>(&'b mut self) -> &'b mut [T] { pub fn get_buffer(&mut self) -> &mut [T] {
&mut self.samples[..] &mut self.buffer[..]
} }
#[inline] #[inline]
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
self.samples.len() self.buffer.len()
} }
#[inline] #[inline]
pub fn finish(self) { pub fn finish(self) {
let Buffer { samples_sender, samples, num_channels, pending_samples, .. } = self;
// TODO: At the moment this assumes the Vec<T> is a Vec<f32>. // TODO: At the moment this assumes the Vec<T> is a Vec<f32>.
// Need to add T: Sample and use Sample::to_vec_f32. // Need to add T: Sample and use Sample::to_vec_f32.
let num_samples = samples.len(); let Buffer { mut args, buffer } = self;
let samples = unsafe { mem::transmute(samples) };
pending_samples.fetch_add(num_samples, Ordering::SeqCst); let num_channels = args.data.channels().count();
match samples_sender.send((samples, num_channels)) { for (i, frame) in buffer.chunks(num_channels).enumerate() {
Err(_) => panic!("Failed to send samples to audio unit callback."), for (channel, sample) in args.data.channels_mut().zip(frame.iter()) {
Ok(()) => (), channel[i] = *sample;
}
} }
} }
} }
@ -81,91 +84,116 @@ impl<'a, T> Buffer<'a, T> {
type NumChannels = usize; type NumChannels = usize;
type NumFrames = usize; type NumFrames = usize;
pub struct Voice;
#[allow(dead_code)] // the audio_unit will be dropped if we don't hold it. #[allow(dead_code)] // the audio_unit will be dropped if we don't hold it.
pub struct Voice { pub struct SamplesStream {
audio_unit: AudioUnit, audio_unit: AudioUnit,
ready_receiver: Receiver<(NumChannels, NumFrames)>, inner: Arc<Mutex<SamplesStreamInner>>,
samples_sender: Sender<(Vec<f32>, NumChannels)>,
underflow: Arc<Mutex<RefCell<bool>>>,
last_ready: Arc<Mutex<RefCell<Option<(NumChannels, NumFrames)>>>>,
pending_samples: Arc<AtomicUsize>
} }
unsafe impl Sync for Voice {}
unsafe impl Send for Voice {} struct SamplesStreamInner {
scheduled_task: Option<TaskHandle>,
current_callback: Option<render_callback::Args<data::NonInterleaved<f32>>>,
}
impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
fn poll(&mut self, _: &mut Task) -> Poll<Option<Self::Item>, Self::Error> {
let mut inner = self.inner.lock().unwrap();
// There are two possibilites: either we're answering a callback of coreaudio and we return
// a buffer, or we're not answering a callback and we return that we're not ready.
let current_callback = match inner.current_callback.take() {
Some(c) => c,
None => return Poll::NotReady
};
let buffer_len = current_callback.num_frames * current_callback.data.channels().count();
let buffer = Buffer {
args: current_callback,
buffer: vec![0.0; buffer_len],
};
Poll::Ok(Some(UnknownTypeBuffer::F32(::Buffer { target: Some(buffer) })))
}
fn schedule(&mut self, task: &mut Task) {
self.inner.lock().unwrap().scheduled_task = Some(task.handle().clone());
}
}
impl Voice { impl Voice {
pub fn new(_: &Endpoint, _: &Format) -> Result<Voice, CreationError> { pub fn new(_: &Endpoint, _: &Format, _: &EventLoop)
// A channel for signalling that the audio unit is ready for data. -> Result<(Voice, SamplesStream), CreationError>
let (ready_sender, ready_receiver) = channel(); {
// A channel for sending the audio callback a pointer to the sample data. let inner = Arc::new(Mutex::new(SamplesStreamInner {
let (samples_sender, samples_receiver) = channel(); scheduled_task: None,
current_callback: None,
}));
let underflow = Arc::new(Mutex::new(RefCell::new(false))); fn convert_error(err: coreaudio::Error) -> CreationError {
let uf_clone = underflow.clone(); match err {
coreaudio::Error::RenderCallbackBufferFormatDoesNotMatchAudioUnitStreamFormat |
let pending_samples: Arc<AtomicUsize> = Arc::new(AtomicUsize::new(0)); coreaudio::Error::NoKnownSubtype |
coreaudio::Error::AudioUnit(coreaudio::error::AudioUnitError::FormatNotSupported) |
let pending_samples_c = pending_samples.clone(); coreaudio::Error::AudioCodec(_) |
coreaudio::Error::AudioFormat(_) => CreationError::FormatNotSupported,
let audio_unit_result = AudioUnit::new(IOType::HalOutput); _ => CreationError::DeviceNotAvailable,
if let Ok(mut audio_unit) = audio_unit_result {
// TODO: iOS uses integer and fixed-point data
if let Ok(()) = audio_unit.set_render_callback(move |args: render_callback::Args<data::NonInterleaved<f32>>| {
let render_callback::Args { num_frames, mut data, .. } = args;
let num_channels = data.channels().count();
if let Err(_) = ready_sender.send((num_channels, num_frames)) {
return Err(());
}
loop {
if let Ok((samples, num_channels)) = samples_receiver.try_recv() {
let samples: Vec<f32> = samples;
if let Ok(uf) = uf_clone.lock() {
*(uf.borrow_mut()) = num_frames > samples.len() / num_channels;
} else { return Err(()) }
pending_samples_c.fetch_sub(samples.len(), Ordering::SeqCst);
for (i, frame) in samples.chunks(num_channels).enumerate() {
for (channel, sample) in data.channels_mut().zip(frame.iter()) {
channel[i] = *sample;
}
}
break;
};
}
Ok(())
}) {
if let Ok(()) = audio_unit.start() {
return Ok(Voice {
audio_unit: audio_unit,
ready_receiver: ready_receiver,
samples_sender: samples_sender,
underflow: underflow,
last_ready: Arc::new(Mutex::new(RefCell::new(None))),
pending_samples: pending_samples
})
}
} }
} }
Err(CreationError::DeviceNotAvailable) let au_type = coreaudio::audio_unit::IOType::DefaultOutput;
} let mut audio_unit = try!(AudioUnit::new(au_type).map_err(convert_error));
pub fn append_data<'a, T>(&'a mut self, max_elements: usize) -> Buffer<'a, T> where T: Clone { // TODO: iOS uses integer and fixed-point data
// Block until the audio callback is ready for more data.
let (channels, frames) = self.block_until_ready(); {
let buffer_size = cmp::min(channels * frames, max_elements); let inner = inner.clone();
Buffer { let result = audio_unit.set_render_callback(move |args| {
samples_sender: self.samples_sender.clone(), // This callback is entered whenever the coreaudio engine needs to be fed data.
samples: vec![unsafe { mem::uninitialized() }; buffer_size],
num_channels: channels as usize, // Store the callback argument in the `SamplesStreamInner` and return the task
marker: PhantomData, // that we're supposed to notify.
pending_samples: self.pending_samples.clone() let scheduled = {
let mut inner = inner.lock().unwrap();
assert!(inner.current_callback.is_none());
inner.current_callback = Some(args);
inner.scheduled_task.take()
};
// It is important that `inner` is unlocked here.
if let Some(scheduled) = scheduled {
// Calling `notify()` should immediately call `poll()` on the `SamplesStream`,
// which will use the data we stored in `current_callback`.
scheduled.notify();
}
// TODO: what should happen if the callback wasn't processed? in other word, what
// if the user didn't register any handler or did a stupid thing in the
// handler (like mem::forgetting the buffer)?
Ok(())
});
try!(result.map_err(convert_error));
} }
try!(audio_unit.start().map_err(convert_error));
let samples_stream = SamplesStream {
audio_unit: audio_unit,
inner: inner,
};
Ok((Voice, samples_stream))
} }
#[inline] #[inline]
@ -177,72 +205,4 @@ impl Voice {
pub fn pause(&mut self) { pub fn pause(&mut self) {
unimplemented!() unimplemented!()
} }
#[inline]
pub fn get_period(&self) -> usize {
if let Some(ready) = self.update_last_ready() {
(ready.0 * ready.1) as usize
} else {
0
}
}
#[inline]
pub fn get_pending_samples(&self) -> usize {
self.pending_samples.load(Ordering::Relaxed)
}
/// Attempts to store the most recent ready message into the internal
/// ref cell, then return the last ready message. If the last ready hasn't
/// been reset with `clear_last_ready`, then it will not be set and the
/// current value will be returned. Else, the ready_receiver will be
/// try_recv'd and if it is ready, the last ready will be set and returned.
/// Finally, if the ready_receiver had no data at try_recv, None will be
/// returned.
#[inline]
fn update_last_ready(&self) -> Option<(NumChannels, NumFrames)> {
let refcell = self.last_ready.lock().unwrap();
let data = refcell.borrow();
if let Some(s) = *data {
//
return Some(s);
} else {
drop(data);
let mut data = refcell.borrow_mut();
if let Ok(ready) = self.ready_receiver.try_recv() {
// the audiounit is ready so we can set last_ready
*data = Some(ready);
return *data;
}
}
None
}
/// Block until ready to send data. This checks last_ready first. In any
/// case, last_ready will be set to None when this function returns.
fn block_until_ready(&self) -> (NumChannels, NumFrames) {
let refcell = self.last_ready.lock().unwrap();
let data = refcell.borrow();
if let Some(s) = *data {
drop(data);
let mut data = refcell.borrow_mut();
*data = None;
return s;
} else {
match self.ready_receiver.recv() {
Ok(ready) => {
return ready;
},
Err(e) => panic!("Couldn't receive a ready message: \
{:?}", e)
}
}
}
#[inline]
pub fn underflowed(&self) -> bool {
let uf = self.underflow.lock().unwrap();
let v = uf.borrow();
*v
}
} }

View File

@ -1,7 +1,7 @@
/*! /*!
# How to use cpal # How to use cpal
In order to play a sound, first you need to create a `Voice`. In order to play a sound, first you need to create an `EventLoop` and a `Voice`.
```no_run ```no_run
// getting the default sound output of the system (can return `None` if nothing is supported) // getting the default sound output of the system (can return `None` if nothing is supported)
@ -13,30 +13,50 @@ let endpoint = cpal::get_default_endpoint().unwrap();
// getting a format for the PCM // getting a format for the PCM
let format = endpoint.get_supported_formats_list().unwrap().next().unwrap(); let format = endpoint.get_supported_formats_list().unwrap().next().unwrap();
let mut voice = cpal::Voice::new(&endpoint, &format).unwrap(); let event_loop = cpal::EventLoop::new();
let (voice, mut samples_stream) = cpal::Voice::new(&endpoint, &format, &event_loop).unwrap();
``` ```
Then you must send raw samples to it by calling `append_data`. You must take the number of channels The `voice` can be used to control the play/pause of the output, while the `samples_stream` can
and samples rate into account when writing the data. be used to register a callback that will be called whenever the backend is ready to get data.
See the documentation of `futures-rs` for more info about how to use streams.
```ignore // TODO: unignore
# let mut samples_stream: cpal::SamplesStream = unsafe { std::mem::uninitialized() };
use futures::stream::Stream;
samples_stream.for_each(move |buffer| -> Result<_, ()> {
// write data to `buffer` here
Ok(())
}).forget();
```
TODO: add example TODO: add example
**Important**: the `append_data` function can return a buffer shorter than what you requested. After you have registered a callback, call `play`:
This is the case if the device doesn't have enough space available. **It happens very often**,
this is not some obscure situation that can be ignored.
After you have submitted data for the first time, call `play`:
```no_run ```no_run
# let mut voice: cpal::Voice = unsafe { std::mem::uninitialized() }; # let mut voice: cpal::Voice = unsafe { std::mem::uninitialized() };
voice.play(); voice.play();
``` ```
The audio device of the user will read the buffer that you sent, and play it. If the audio device And finally, run the event loop:
reaches the end of the data, it will stop playing. You must continuously fill the buffer by
calling `append_data` repeatedly if you don't want the audio to stop playing. ```no_run
# let mut event_loop: cpal::EventLoop = unsafe { std::mem::uninitialized() };
event_loop.run();
```
Calling `run()` will block the thread forever, so it's usually best done in a separate thread.
While `run()` is running, the audio device of the user will call the callbacks you registered
from time to time.
*/ */
extern crate futures;
#[macro_use] #[macro_use]
extern crate lazy_static; extern crate lazy_static;
extern crate libc; extern crate libc;
@ -50,6 +70,10 @@ use std::fmt;
use std::error::Error; use std::error::Error;
use std::ops::{Deref, DerefMut}; use std::ops::{Deref, DerefMut};
use futures::stream::Stream;
use futures::Poll;
use futures::Task;
mod null; mod null;
mod samples_formats; mod samples_formats;
@ -169,29 +193,43 @@ impl Iterator for SupportedFormatsIterator {
} }
} }
pub struct EventLoop(cpal_impl::EventLoop);
impl EventLoop {
#[inline]
pub fn new() -> EventLoop {
EventLoop(cpal_impl::EventLoop::new())
}
#[inline]
pub fn run(&self) {
self.0.run()
}
}
/// Represents a buffer that must be filled with audio data. /// Represents a buffer that must be filled with audio data.
/// ///
/// You should destroy this object as soon as possible. Data is only committed when it /// You should destroy this object as soon as possible. Data is only committed when it
/// is destroyed. /// is destroyed.
#[must_use] #[must_use]
pub struct Buffer<'a, T: 'a> where T: Sample { pub struct Buffer<T> where T: Sample {
// also contains something, taken by `Drop` // also contains something, taken by `Drop`
target: Option<cpal_impl::Buffer<'a, T>>, target: Option<cpal_impl::Buffer<T>>,
} }
/// This is the struct that is provided to you by cpal when you want to write samples to a buffer. /// This is the struct that is provided to you by cpal when you want to write samples to a buffer.
/// ///
/// Since the type of data is only known at runtime, you have to fill the right buffer. /// Since the type of data is only known at runtime, you have to fill the right buffer.
pub enum UnknownTypeBuffer<'a> { pub enum UnknownTypeBuffer {
/// Samples whose format is `u16`. /// Samples whose format is `u16`.
U16(Buffer<'a, u16>), U16(Buffer<u16>),
/// Samples whose format is `i16`. /// Samples whose format is `i16`.
I16(Buffer<'a, i16>), I16(Buffer<i16>),
/// Samples whose format is `f32`. /// Samples whose format is `f32`.
F32(Buffer<'a, f32>), F32(Buffer<f32>),
} }
impl<'a> UnknownTypeBuffer<'a> { impl UnknownTypeBuffer {
/// Returns the length of the buffer in number of samples. /// Returns the length of the buffer in number of samples.
#[inline] #[inline]
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
@ -282,13 +320,19 @@ pub struct Voice {
impl Voice { impl Voice {
/// Builds a new channel. /// Builds a new channel.
#[inline] #[inline]
pub fn new(endpoint: &Endpoint, format: &Format) -> Result<Voice, CreationError> { pub fn new(endpoint: &Endpoint, format: &Format, event_loop: &EventLoop)
let channel = try!(cpal_impl::Voice::new(&endpoint.0, format)); -> Result<(Voice, SamplesStream), CreationError>
{
let (voice, stream) = try!(cpal_impl::Voice::new(&endpoint.0, format, &event_loop.0));
Ok(Voice { let voice = Voice {
voice: channel, voice: voice,
format: format.clone(), format: format.clone(),
}) };
let stream = SamplesStream(stream);
Ok((voice, stream))
} }
/// Returns the format used by the voice. /// Returns the format used by the voice.
@ -324,51 +368,6 @@ impl Voice {
self.format().data_type self.format().data_type
} }
/// Returns the minimum number of samples that should be put in a buffer before it is
/// processable by the audio output.
///
/// If you put less than this value in the buffer, the buffer will not be processed and you
/// risk an underrun.
#[inline]
pub fn get_period(&self) -> usize {
self.voice.get_period()
}
/// Adds some PCM data to the voice's buffer.
///
/// This function indirectly returns a `Buffer` object that must be filled with the audio data.
/// The size of the buffer being returned depends on the current state of the backend
/// and can't be known in advance. However it is never greater than `max_samples`.
///
/// You must fill the buffer *entirely*, so do not set `max_samples` to a value greater
/// than the amount of data available to you.
///
/// Channels are interleaved. For example if you have two channels, you must write
/// the first sample of the first channel, then the first sample of the second channel,
/// then the second sample of the first channel, then the second sample of the second
/// channel, etc.
///
/// ## Panic
///
/// Panics if `max_samples` is 0.
///
#[inline]
pub fn append_data(&mut self, max_samples: usize) -> UnknownTypeBuffer {
assert!(max_samples != 0);
match self.get_samples_format() {
SampleFormat::U16 => UnknownTypeBuffer::U16(Buffer {
target: Some(self.voice.append_data(max_samples))
}),
SampleFormat::I16 => UnknownTypeBuffer::I16(Buffer {
target: Some(self.voice.append_data(max_samples))
}),
SampleFormat::F32 => UnknownTypeBuffer::F32(Buffer {
target: Some(self.voice.append_data(max_samples))
}),
}
}
/// Sends a command to the audio device that it should start playing. /// Sends a command to the audio device that it should start playing.
/// ///
/// Has no effect is the voice was already playing. /// Has no effect is the voice was already playing.
@ -389,25 +388,26 @@ impl Voice {
pub fn pause(&mut self) { pub fn pause(&mut self) {
self.voice.pause() self.voice.pause()
} }
}
pub struct SamplesStream(cpal_impl::SamplesStream);
impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
/// Returns the number of samples in the buffer that are currently being processed by the
/// audio playback backend.
///
/// This function is useful to determine how much time it will take to finish playing the
/// current sound.
#[inline] #[inline]
pub fn get_pending_samples(&self) -> usize { fn poll(&mut self, task: &mut Task) -> Poll<Option<Self::Item>, Self::Error> {
self.voice.get_pending_samples() self.0.poll(task)
} }
/// Returns true if the voice has finished reading all the data you sent to it.
#[inline] #[inline]
pub fn underflowed(&self) -> bool { fn schedule(&mut self, task: &mut Task) {
self.voice.underflowed() self.0.schedule(task)
} }
} }
impl<'a, T> Deref for Buffer<'a, T> where T: Sample { impl<T> Deref for Buffer<T> where T: Sample {
type Target = [T]; type Target = [T];
#[inline] #[inline]
@ -416,14 +416,14 @@ impl<'a, T> Deref for Buffer<'a, T> where T: Sample {
} }
} }
impl<'a, T> DerefMut for Buffer<'a, T> where T: Sample { impl<T> DerefMut for Buffer<T> where T: Sample {
#[inline] #[inline]
fn deref_mut(&mut self) -> &mut [T] { fn deref_mut(&mut self) -> &mut [T] {
self.target.as_mut().unwrap().get_buffer() self.target.as_mut().unwrap().get_buffer()
} }
} }
impl<'a, T> Drop for Buffer<'a, T> where T: Sample { impl<T> Drop for Buffer<T> where T: Sample {
#[inline] #[inline]
fn drop(&mut self) { fn drop(&mut self) {
self.target.take().unwrap().finish(); self.target.take().unwrap().finish();

View File

@ -2,9 +2,22 @@
use std::marker::PhantomData; use std::marker::PhantomData;
use futures::Poll;
use futures::Task;
use futures::stream::Stream;
use CreationError; use CreationError;
use Format; use Format;
use FormatsEnumerationError; use FormatsEnumerationError;
use UnknownTypeBuffer;
pub struct EventLoop;
impl EventLoop {
#[inline]
pub fn new() -> EventLoop { EventLoop }
#[inline]
pub fn run(&self) { loop { /* TODO: don't spin */ } }
}
#[derive(Default)] #[derive(Default)]
pub struct EndpointsIterator; pub struct EndpointsIterator;
@ -52,18 +65,16 @@ impl Iterator for SupportedFormatsIterator {
} }
pub struct Voice; pub struct Voice;
pub struct SamplesStream;
impl Voice { impl Voice {
#[inline] #[inline]
pub fn new(_: &Endpoint, _: &Format) -> Result<Voice, CreationError> { pub fn new(_: &Endpoint, _: &Format, _: &EventLoop)
-> Result<(Voice, SamplesStream), CreationError>
{
Err(CreationError::DeviceNotAvailable) Err(CreationError::DeviceNotAvailable)
} }
#[inline]
pub fn append_data<'a, T>(&'a mut self, _: usize) -> Buffer<'a, T> {
unreachable!()
}
#[inline] #[inline]
pub fn play(&mut self) { pub fn play(&mut self) {
} }
@ -71,30 +82,29 @@ impl Voice {
#[inline] #[inline]
pub fn pause(&mut self) { pub fn pause(&mut self) {
} }
}
impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
#[inline] #[inline]
pub fn get_period(&self) -> usize { fn poll(&mut self, _: &mut Task) -> Poll<Option<Self::Item>, Self::Error> {
0 Poll::NotReady
} }
#[inline] #[inline]
pub fn get_pending_samples(&self) -> usize { fn schedule(&mut self, _: &mut Task) {
unreachable!()
}
#[inline]
pub fn underflowed(&self) -> bool {
false
} }
} }
pub struct Buffer<'a, T: 'a> { pub struct Buffer<T> {
marker: PhantomData<&'a T>, marker: PhantomData<T>,
} }
impl<'a, T> Buffer<'a, T> { impl<T> Buffer<T> {
#[inline] #[inline]
pub fn get_buffer<'b>(&'b mut self) -> &'b mut [T] { pub fn get_buffer(&mut self) -> &mut [T] {
unreachable!() unreachable!()
} }

View File

@ -1,5 +1,6 @@
extern crate winapi; extern crate winapi;
extern crate ole32; extern crate ole32;
extern crate kernel32;
use std::io::Error as IoError; use std::io::Error as IoError;
use std::os::windows::ffi::OsStringExt; use std::os::windows::ffi::OsStringExt;
@ -17,7 +18,7 @@ use SampleFormat;
pub use std::option::IntoIter as OptionIntoIter; pub use std::option::IntoIter as OptionIntoIter;
pub use self::enumerate::{EndpointsIterator, get_default_endpoint}; pub use self::enumerate::{EndpointsIterator, get_default_endpoint};
pub use self::voice::{Voice, Buffer}; pub use self::voice::{Voice, Buffer, EventLoop, SamplesStream};
pub type SupportedFormatsIterator = OptionIntoIter<Format>; pub type SupportedFormatsIterator = OptionIntoIter<Format>;
@ -36,7 +37,6 @@ fn check_result(result: winapi::HRESULT) -> Result<(), IoError> {
/// Wrapper because of that stupid decision to remove `Send` and `Sync` from raw pointers. /// Wrapper because of that stupid decision to remove `Send` and `Sync` from raw pointers.
#[derive(Copy, Clone)] #[derive(Copy, Clone)]
#[allow(raw_pointer_derive)]
struct IAudioClientWrapper(*mut winapi::IAudioClient); struct IAudioClientWrapper(*mut winapi::IAudioClient);
unsafe impl Send for IAudioClientWrapper {} unsafe impl Send for IAudioClientWrapper {}
unsafe impl Sync for IAudioClientWrapper {} unsafe impl Sync for IAudioClientWrapper {}

View File

@ -1,46 +1,182 @@
use super::com; use super::com;
use super::kernel32;
use super::ole32; use super::ole32;
use super::winapi; use super::winapi;
use super::Endpoint; use super::Endpoint;
use super::check_result; use super::check_result;
use std::cmp;
use std::slice; use std::slice;
use std::mem; use std::mem;
use std::ptr; use std::ptr;
use std::marker::PhantomData; use std::sync::atomic::AtomicBool;
use std::sync::atomic::Ordering;
use std::sync::Arc;
use std::sync::Mutex;
use futures::Poll;
use futures::Task;
use futures::TaskHandle;
use futures::stream::Stream;
use CreationError; use CreationError;
use ChannelPosition; use ChannelPosition;
use Format; use Format;
use SampleFormat; use SampleFormat;
use UnknownTypeBuffer;
pub struct EventLoop {
inner: Arc<EventLoopInner>,
}
unsafe impl Send for EventLoop {}
unsafe impl Sync for EventLoop {}
struct EventLoopInner {
// List of handles that are currently being polled or that are going to be polled. This mutex
// is locked for as long as the event loop is running.
//
// In the `EventLoopScheduled`, the first handle in the list of handles is always
// `pending_scheduled_event`. This means that the length of `handles` is always 1 + the length
// of `task_handles`.
// FIXME: no way to remove elements from that list?
scheduled: Mutex<EventLoopScheduled>,
// Since the above mutex is locked most of the time, we add new handles to this list instead.
// After a new element is added to this list, you should notify `pending_scheduled_event`
// so that they get transferred to `scheduled`.
//
// The length of `handles` and `task_handles` should always be equal.
pending_scheduled: Mutex<EventLoopScheduled>,
// This event is signalled after elements have been added to `pending_scheduled` in order to
// notify that they should be picked up.
pending_scheduled_event: winapi::HANDLE,
}
struct EventLoopScheduled {
// List of handles that correspond to voices.
// They are linked to `task_handles`, but we store them separately in order to easily call
// `WaitForMultipleObjectsEx` on the array without having to perform any conversion.
handles: Vec<winapi::HANDLE>,
// List of task handles corresponding to `handles`. The second element is used to signal
// the voice that it has been signaled.
task_handles: Vec<(TaskHandle, Arc<AtomicBool>)>,
}
impl EventLoop {
pub fn new() -> EventLoop {
let pending_scheduled_event = unsafe {
kernel32::CreateEventA(ptr::null_mut(), 0, 0, ptr::null())
};
EventLoop {
inner: Arc::new(EventLoopInner {
pending_scheduled_event: pending_scheduled_event,
scheduled: Mutex::new(EventLoopScheduled {
handles: vec![pending_scheduled_event],
task_handles: vec![],
}),
pending_scheduled: Mutex::new(EventLoopScheduled {
handles: vec![],
task_handles: vec![],
})
})
}
}
pub fn run(&self) {
unsafe {
let mut scheduled = self.inner.scheduled.lock().unwrap();
loop {
debug_assert!(scheduled.handles.len() == 1 + scheduled.task_handles.len());
// Creating a voice checks for the MAXIMUM_WAIT_OBJECTS limit.
// FIXME: this is not the case ^
debug_assert!(scheduled.handles.len() <= winapi::MAXIMUM_WAIT_OBJECTS as usize);
// Wait for any of the handles to be signalled, which means that the corresponding
// sound needs a buffer.
let result = kernel32::WaitForMultipleObjectsEx(scheduled.handles.len() as u32,
scheduled.handles.as_ptr(),
winapi::FALSE, winapi::INFINITE, /* TODO: allow setting a timeout */
winapi::FALSE /* irrelevant parameter here */);
// Notifying the corresponding task handler.
assert!(result >= winapi::WAIT_OBJECT_0);
let handle_id = (result - winapi::WAIT_OBJECT_0) as usize;
if handle_id == 0 {
// The `pending_scheduled_event` handle has been notified, which means that we
// should pick up the content of `pending_scheduled`.
let mut pending = self.inner.pending_scheduled.lock().unwrap();
scheduled.handles.append(&mut pending.handles);
scheduled.task_handles.append(&mut pending.task_handles);
} else {
scheduled.handles.remove(handle_id);
let (task_handle, ready) = scheduled.task_handles.remove(handle_id - 1);
ready.store(true, Ordering::Relaxed);
task_handle.notify();
}
}
}
}
}
impl Drop for EventLoop {
#[inline]
fn drop(&mut self) {
unsafe {
kernel32::CloseHandle(self.inner.pending_scheduled_event);
}
}
}
pub struct Voice { pub struct Voice {
audio_client: *mut winapi::IAudioClient, inner: Arc<Mutex<VoiceInner>>,
render_client: *mut winapi::IAudioRenderClient, playing: bool,
}
pub struct SamplesStream {
event_loop: Arc<EventLoopInner>,
inner: Arc<Mutex<VoiceInner>>,
// The event that is signalled whenever a buffer is ready to be submitted to the voice.
event: winapi::HANDLE, // TODO: not deleted
max_frames_in_buffer: winapi::UINT32, max_frames_in_buffer: winapi::UINT32,
bytes_per_frame: winapi::WORD, bytes_per_frame: winapi::WORD,
playing: bool, ready: Arc<AtomicBool>,
}
unsafe impl Send for SamplesStream {}
unsafe impl Sync for SamplesStream {}
struct VoiceInner {
audio_client: *mut winapi::IAudioClient,
render_client: *mut winapi::IAudioRenderClient,
} }
unsafe impl Send for Voice {} unsafe impl Send for Voice {}
unsafe impl Sync for Voice {} unsafe impl Sync for Voice {}
impl Voice { impl Voice {
pub fn new(end_point: &Endpoint, format: &Format) -> Result<Voice, CreationError> { pub fn new(end_point: &Endpoint, format: &Format, event_loop: &EventLoop)
-> Result<(Voice, SamplesStream), CreationError>
{
unsafe { unsafe {
// making sure that COM is initialized // Making sure that COM is initialized.
// it's not actually sure that this is required, but when in doubt do it // It's not actually sure that this is required, but when in doubt do it.
com::com_initialized(); com::com_initialized();
// obtaining a `IAudioClient` // Obtaining a `IAudioClient`.
let audio_client = match end_point.build_audioclient() { let audio_client = match end_point.build_audioclient() {
Err(ref e) if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) => Err(ref e) if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) =>
return Err(CreationError::DeviceNotAvailable), return Err(CreationError::DeviceNotAvailable),
e => e.unwrap(), e => e.unwrap(),
}; };
// computing the format and initializing the device // Computing the format and initializing the device.
let format = { let format = {
let format_attempt = try!(format_to_waveformatextensible(format)); let format_attempt = try!(format_to_waveformatextensible(format));
let share_mode = winapi::AUDCLNT_SHAREMODE_SHARED; let share_mode = winapi::AUDCLNT_SHAREMODE_SHARED;
@ -76,8 +212,9 @@ impl Voice {
}; };
// finally initializing the audio client // finally initializing the audio client
let hresult = (*audio_client).Initialize(share_mode, 0, 10000000, 0, let hresult = (*audio_client).Initialize(share_mode,
&format_attempt.Format, ptr::null()); winapi::AUDCLNT_STREAMFLAGS_EVENTCALLBACK,
0, 0, &format_attempt.Format, ptr::null());
match check_result(hresult) { match check_result(hresult) {
Err(ref e) if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) => Err(ref e) if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) =>
{ {
@ -94,6 +231,25 @@ impl Voice {
format_attempt.Format format_attempt.Format
}; };
// Creating the event that will be signalled whenever we need to submit some samples.
let event = {
let event = kernel32::CreateEventA(ptr::null_mut(), 0, 0, ptr::null());
if event == ptr::null_mut() {
(*audio_client).Release();
panic!("Failed to create event");
}
match check_result((*audio_client).SetEventHandle(event)) {
Err(_) => {
(*audio_client).Release();
panic!("Failed to call SetEventHandle")
},
Ok(_) => ()
};
event
};
// obtaining the size of the samples buffer in number of frames // obtaining the size of the samples buffer in number of frames
let max_frames_in_buffer = { let max_frames_in_buffer = {
let mut max_frames_in_buffer = mem::uninitialized(); let mut max_frames_in_buffer = mem::uninitialized();
@ -115,7 +271,7 @@ impl Voice {
max_frames_in_buffer max_frames_in_buffer
}; };
// building a `IAudioRenderClient` that will be used to fill the samples buffer // Building a `IAudioRenderClient` that will be used to fill the samples buffer.
let render_client = { let render_client = {
let mut render_client: *mut winapi::IAudioRenderClient = mem::uninitialized(); let mut render_client: *mut winapi::IAudioRenderClient = mem::uninitialized();
let hresult = (*audio_client).GetService(&winapi::IID_IAudioRenderClient, let hresult = (*audio_client).GetService(&winapi::IID_IAudioRenderClient,
@ -139,79 +295,37 @@ impl Voice {
&mut *render_client &mut *render_client
}; };
// everything went fine // Everything went fine.
Ok(Voice { let inner = Arc::new(Mutex::new(VoiceInner {
audio_client: audio_client, audio_client: audio_client,
render_client: render_client, render_client: render_client,
}));
let voice = Voice {
inner: inner.clone(),
playing: false,
};
let samples_stream = SamplesStream {
event_loop: event_loop.inner.clone(),
inner: inner,
event: event,
max_frames_in_buffer: max_frames_in_buffer, max_frames_in_buffer: max_frames_in_buffer,
bytes_per_frame: format.nBlockAlign, bytes_per_frame: format.nBlockAlign,
playing: false, ready: Arc::new(AtomicBool::new(false)),
})
}
}
pub fn append_data<'a, T>(&'a mut self, max_elements: usize) -> Buffer<'a, T> {
unsafe {
// obtaining the number of frames that are available to be written
let frames_available = {
let mut padding = mem::uninitialized();
let hresult = (*self.audio_client).GetCurrentPadding(&mut padding);
check_result(hresult).unwrap();
self.max_frames_in_buffer - padding
}; };
// making sure `frames_available` is inferior to `max_elements` Ok((voice, samples_stream))
let frames_available = cmp::min(frames_available,
max_elements as u32 * mem::size_of::<T>() as u32 /
self.bytes_per_frame as u32);
// the WASAPI has some weird behaviors when the buffer size is zero, so we handle this
// ourselves
if frames_available == 0 {
return Buffer::Empty;
}
// obtaining a pointer to the buffer
let (buffer_data, buffer_len) = {
let mut buffer: *mut winapi::BYTE = mem::uninitialized();
let hresult = (*self.render_client).GetBuffer(frames_available,
&mut buffer as *mut *mut _);
check_result(hresult).unwrap(); // FIXME: can return `AUDCLNT_E_DEVICE_INVALIDATED`
debug_assert!(!buffer.is_null());
(buffer as *mut T,
frames_available as usize * self.bytes_per_frame as usize / mem::size_of::<T>())
};
Buffer::Buffer {
render_client: self.render_client,
buffer_data: buffer_data,
buffer_len: buffer_len,
frames: frames_available,
marker: PhantomData,
}
}
}
#[inline]
pub fn get_period(&self) -> usize {
0
}
pub fn get_pending_samples(&self) -> usize {
unsafe {
let mut padding = mem::uninitialized();
let hresult = (*self.audio_client).GetCurrentPadding(&mut padding);
check_result(hresult).unwrap();
padding as usize
} }
} }
#[inline] #[inline]
pub fn play(&mut self) { pub fn play(&mut self) {
if !self.playing { if !self.playing {
let mut inner = self.inner.lock().unwrap();
unsafe { unsafe {
let hresult = (*self.audio_client).Start(); let hresult = (*inner.audio_client).Start();
check_result(hresult).unwrap(); check_result(hresult).unwrap();
} }
} }
@ -222,27 +336,83 @@ impl Voice {
#[inline] #[inline]
pub fn pause(&mut self) { pub fn pause(&mut self) {
if self.playing { if self.playing {
let mut inner = self.inner.lock().unwrap();
unsafe { unsafe {
let hresult = (*self.audio_client).Stop(); let hresult = (*inner.audio_client).Stop();
check_result(hresult).unwrap(); check_result(hresult).unwrap();
} }
} }
self.playing = false; self.playing = false;
} }
}
pub fn underflowed(&self) -> bool { impl Stream for SamplesStream {
type Item = UnknownTypeBuffer;
type Error = ();
fn poll(&mut self, _: &mut Task) -> Poll<Option<Self::Item>, Self::Error> {
unsafe { unsafe {
let mut padding = mem::uninitialized(); if self.ready.swap(false, Ordering::Relaxed) == false {
let hresult = (*self.audio_client).GetCurrentPadding(&mut padding); // Despite its name this function does not block, because we pass `0`.
check_result(hresult).unwrap(); let result = kernel32::WaitForSingleObject(self.event, 0);
padding == 0 // Returning if the event is not ready.
match result {
winapi::WAIT_OBJECT_0 => (),
winapi::WAIT_TIMEOUT => return Poll::NotReady,
_ => unreachable!()
};
}
// If we reach here, that means we're ready to accept new samples.
let mut inner = self.inner.lock().unwrap();
// Obtaining the number of frames that are available to be written.
let frames_available = {
let mut padding = mem::uninitialized();
let hresult = (*inner.audio_client).GetCurrentPadding(&mut padding);
check_result(hresult).unwrap();
self.max_frames_in_buffer - padding
};
// Obtaining a pointer to the buffer.
let (buffer_data, buffer_len) = {
let mut buffer: *mut winapi::BYTE = mem::uninitialized();
let hresult = (*inner.render_client).GetBuffer(frames_available,
&mut buffer as *mut *mut _);
check_result(hresult).unwrap(); // FIXME: can return `AUDCLNT_E_DEVICE_INVALIDATED`
debug_assert!(!buffer.is_null());
(buffer as *mut _,
frames_available as usize * self.bytes_per_frame as usize / mem::size_of::<f32>()) // FIXME: correct size
};
let buffer = Buffer {
voice: self.inner.clone(),
buffer_data: buffer_data,
buffer_len: buffer_len,
frames: frames_available,
};
Poll::Ok(Some(UnknownTypeBuffer::F32(::Buffer { target: Some(buffer) }))) // FIXME: not necessarily F32
} }
} }
fn schedule(&mut self, task: &mut Task) {
let mut pending = self.event_loop.pending_scheduled.lock().unwrap();
pending.handles.push(self.event);
pending.task_handles.push((task.handle().clone(), self.ready.clone()));
drop(pending);
let result = unsafe { kernel32::SetEvent(self.event_loop.pending_scheduled_event) };
assert!(result != 0);
}
} }
impl Drop for Voice { impl Drop for VoiceInner {
#[inline] #[inline]
fn drop(&mut self) { fn drop(&mut self) {
unsafe { unsafe {
@ -252,48 +422,40 @@ impl Drop for Voice {
} }
} }
pub enum Buffer<'a, T: 'a> { pub struct Buffer<T> {
Empty, voice: Arc<Mutex<VoiceInner>>,
Buffer {
render_client: *mut winapi::IAudioRenderClient, buffer_data: *mut T,
buffer_data: *mut T, buffer_len: usize,
buffer_len: usize, frames: winapi::UINT32,
frames: winapi::UINT32,
marker: PhantomData<&'a mut T>,
},
} }
impl<'a, T> Buffer<'a, T> { unsafe impl<T> Send for Buffer<T> {}
impl<T> Buffer<T> {
#[inline] #[inline]
pub fn get_buffer<'b>(&'b mut self) -> &'b mut [T] { pub fn get_buffer(&mut self) -> &mut [T] {
match self { unsafe {
&mut Buffer::Empty => &mut [], slice::from_raw_parts_mut(self.buffer_data, self.buffer_len)
&mut Buffer::Buffer { buffer_data, buffer_len, .. } => unsafe {
slice::from_raw_parts_mut(buffer_data, buffer_len)
},
} }
} }
#[inline] #[inline]
pub fn len(&self) -> usize { pub fn len(&self) -> usize {
match self { self.buffer_len
&Buffer::Empty => 0,
&Buffer::Buffer { buffer_len, .. } => buffer_len,
}
} }
#[inline] #[inline]
pub fn finish(self) { pub fn finish(self) {
if let Buffer::Buffer { render_client, frames, .. } = self { unsafe {
unsafe { let mut inner = self.voice.lock().unwrap();
let hresult = (*render_client).ReleaseBuffer(frames as u32, 0); let hresult = (*inner.render_client).ReleaseBuffer(self.frames as u32, 0);
match check_result(hresult) { match check_result(hresult) {
// ignoring the error that is produced if the device has been disconnected // ignoring the error that is produced if the device has been disconnected
Err(ref e) Err(ref e)
if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) => (), if e.raw_os_error() == Some(winapi::AUDCLNT_E_DEVICE_INVALIDATED) => (),
e => e.unwrap(), e => e.unwrap(),
}; };
}
} }
} }
} }