opt in and bug fix

This commit is contained in:
Tom Gowan 2018-11-06 12:15:17 +11:00 committed by mitchmindtree
parent 1f24c76e6a
commit 616974353b
9 changed files with 928 additions and 905 deletions

View File

@ -8,6 +8,9 @@ documentation = "https://docs.rs/cpal"
license = "Apache-2.0"
keywords = ["audio", "sound"]
[profile.release]
debug = true
[dependencies]
failure = "0.1.5"
lazy_static = "1.3"
@ -16,11 +19,9 @@ num-traits = "0.2.6"
[dev-dependencies]
hound = "3.4"
[target.'cfg(any(target_os = "windows" ))'.dependencies]
asio-sys = { version = "0.1", path = "asio-sys" }
[target.'cfg(target_os = "windows")'.dependencies]
winapi = { version = "0.3", features = ["audiosessiontypes", "audioclient", "coml2api", "combaseapi", "debug", "devpkey", "handleapi", "ksmedia", "mmdeviceapi", "objbase", "std", "synchapi", "winuser"] }
asio-sys = { version = "0.1", path = "asio-sys" }
[target.'cfg(any(target_os = "linux", target_os = "dragonfly", target_os = "freebsd", target_os = "openbsd"))'.dependencies]
alsa-sys = { version = "0.1", path = "alsa-sys" }

View File

@ -38,6 +38,7 @@ fn main() {
println!("cargo:rustc-link-lib=dylib=User32");
println!("cargo:rustc-link-search={}", out_dir.display());
println!("cargo:rustc-link-lib=static=asio");
println!("cargo:rustc-cfg=asio");
// Check if bindings exist
// if they dont create them

View File

@ -0,0 +1,884 @@
mod asio_import;
#[macro_use]
pub mod errors;
use self::errors::{AsioDriverError, AsioError, AsioErrorWrapper};
use std::ffi::CStr;
use std::ffi::CString;
use std::mem;
use std::os::raw::{c_char, c_double, c_long, c_void};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Mutex, MutexGuard};
use std;
use num;
// Bindings import
use self::asio_import as ai;
// TODO I dont think this is needed anymore
/*
pub struct CbArgs<S, D> {
pub stream_id: S,
pub data: D,
}
*/
/// Holds the pointer to the callbacks that come from cpal
struct BufferCallback(Box<FnMut(i32) + Send>);
/// A global way to access all the callbacks.
/// This is required because of how ASIO
/// calls the buffer_switch function.
/// Options are used so that when a callback is
/// removed we don't change the Vec indicies.
/// The indicies are how we match a callback
/// with a stream.
lazy_static! {
static ref buffer_callback: Mutex<Vec<Option<BufferCallback>>> = Mutex::new(Vec::new());
}
/// Globally available state of the ASIO driver.
/// This allows all calls the the driver to ensure
/// they are calling in the correct state.
/// It also prevents multiple calls happening at once.
lazy_static! {
static ref ASIO_DRIVERS: Mutex<AsioWrapper> = Mutex::new(AsioWrapper {
state: AsioState::Offline,
});
}
/// Count of active device and streams.
/// Used to clean up the driver connection
/// when there are no active connections.
static STREAM_DRIVER_COUNT: AtomicUsize = AtomicUsize::new(0);
/// Tracks which buffer needs to be silenced.
pub static SILENCE_FIRST: AtomicBool = AtomicBool::new(false);
pub static SILENCE_SECOND: AtomicBool = AtomicBool::new(false);
/// Amount of input and output
/// channels available.
#[derive(Debug)]
pub struct Channel {
pub ins: i64,
pub outs: i64,
}
/// Sample rate of the ASIO device.
#[derive(Debug)]
pub struct SampleRate {
pub rate: u32,
}
/// A marker type to make sure
/// all calls to the driver have an
/// active connection.
#[derive(Debug, Clone)]
pub struct Drivers;
/// Tracks the current state of the
/// ASIO drivers.
#[derive(Debug)]
struct AsioWrapper {
state: AsioState,
}
/// All possible states of the
/// ASIO driver. Mapped to the
/// FSM in the ASIO SDK docs.
#[derive(Debug)]
enum AsioState {
Offline,
Loaded,
Initialized,
Prepared,
Running,
}
/// Input and Output streams.
/// There is only ever max one
/// input and one output. Only one
/// is required.
pub struct AsioStreams {
pub input: Option<AsioStream>,
pub output: Option<AsioStream>,
}
/// A stream to ASIO.
/// Contains the buffers.
pub struct AsioStream {
/// A Double buffer per channel
pub buffer_infos: Vec<AsioBufferInfo>,
/// Size of each buffer
pub buffer_size: i32,
}
/// All the possible types from ASIO.
/// This is a direct copy of the ASIOSampleType
/// inside ASIO SDK.
#[derive(Debug, FromPrimitive)]
#[repr(C)]
pub enum AsioSampleType {
ASIOSTInt16MSB = 0,
ASIOSTInt24MSB = 1, // used for 20 bits as well
ASIOSTInt32MSB = 2,
ASIOSTFloat32MSB = 3, // IEEE 754 32 bit float
ASIOSTFloat64MSB = 4, // IEEE 754 64 bit double float
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can be more easily used with these
ASIOSTInt32MSB16 = 8, // 32 bit data with 16 bit alignment
ASIOSTInt32MSB18 = 9, // 32 bit data with 18 bit alignment
ASIOSTInt32MSB20 = 10, // 32 bit data with 20 bit alignment
ASIOSTInt32MSB24 = 11, // 32 bit data with 24 bit alignment
ASIOSTInt16LSB = 16,
ASIOSTInt24LSB = 17, // used for 20 bits as well
ASIOSTInt32LSB = 18,
ASIOSTFloat32LSB = 19, // IEEE 754 32 bit float, as found on Intel x86 architecture
ASIOSTFloat64LSB = 20, // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
ASIOSTInt32LSB16 = 24, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB18 = 25, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB20 = 26, // 32 bit data with 20 bit alignment
ASIOSTInt32LSB24 = 27, // 32 bit data with 24 bit alignment
// ASIO DSD format.
ASIOSTDSDInt8LSB1 = 32, // DSD 1 bit data, 8 samples per byte. First sample in Least significant bit.
ASIOSTDSDInt8MSB1 = 33, // DSD 1 bit data, 8 samples per byte. First sample in Most significant bit.
ASIOSTDSDInt8NER8 = 40, // DSD 8 bit data, 1 sample per byte. No Endianness required.
ASIOSTLastEntry,
}
/// Gives information about buffers
/// Receives pointers to buffers
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct AsioBufferInfo {
/// 0 for output 1 for input
pub is_input: c_long,
/// Which channel. Starts at 0
pub channel_num: c_long,
/// Pointer to each half of the double buffer.
pub buffers: [*mut c_void; 2],
}
/// Callbacks that ASIO calls
#[repr(C)]
struct AsioCallbacks {
buffer_switch: extern "C" fn(double_buffer_index: c_long, direct_process: c_long) -> (),
sample_rate_did_change: extern "C" fn(s_rate: c_double) -> (),
asio_message:
extern "C" fn(selector: c_long, value: c_long, message: *mut (), opt: *mut c_double)
-> c_long,
buffer_switch_time_info: extern "C" fn(
params: *mut ai::ASIOTime,
double_buffer_index: c_long,
direct_process: c_long,
) -> *mut ai::ASIOTime,
}
/// This is called by ASIO.
/// Here we run the callback for each stream.
/// double_buffer_index is either 0 or 1
/// indicating which buffer to fill
extern "C" fn buffer_switch(double_buffer_index: c_long, _direct_process: c_long) -> () {
// This lock is probably unavoidable
// but locks in the audio stream is not great
let mut bcs = buffer_callback.lock().unwrap();
for mut bc in bcs.iter_mut() {
if let Some(ref mut bc) = bc {
bc.run(double_buffer_index);
}
}
}
/// Idicates the sample rate has changed
/// TODO Change the sample rate when this
/// is called.
extern "C" fn sample_rate_did_change(_s_rate: c_double) -> () {}
/// Messages for ASIO
/// This is not currently used
extern "C" fn asio_message(
_selector: c_long, _value: c_long, _message: *mut (), _opt: *mut c_double,
) -> c_long {
// TODO Impliment this to give proper responses
4 as c_long
}
/// Similar to buffer switch but with time info
/// Not currently used
extern "C" fn buffer_switch_time_info(
params: *mut ai::ASIOTime, _double_buffer_index: c_long, _direct_process: c_long,
) -> *mut ai::ASIOTime {
params
}
/// Helper function for getting the drivers.
/// Note this is a lock.
fn get_drivers() -> MutexGuard<'static, AsioWrapper> {
ASIO_DRIVERS.lock().unwrap()
}
impl Drivers {
/// Load the drivers from a driver name.
/// This will destroy the old drivers.
#[allow(unused_assignments)]
pub fn load(driver_name: &str) -> Result<Self, AsioDriverError> {
let mut drivers = get_drivers();
// Make owned CString to send to load driver
let mut my_driver_name = CString::new(driver_name).expect("Can't go from str to CString");
let raw = my_driver_name.into_raw();
let mut driver_info = ai::ASIODriverInfo {
_bindgen_opaque_blob: [0u32; 43],
};
unsafe {
// Destroy old drivers and load new drivers.
let load_result = drivers.load(raw);
// Take back ownership
my_driver_name = CString::from_raw(raw);
if load_result {
// Initialize ASIO
match drivers.asio_init(&mut driver_info) {
Ok(_) => {
// If it worked then add a active connection to the drivers
// TODO Make sure this is decremented when old drivers are dropped
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
Ok(Drivers)
},
Err(_) => Err(AsioDriverError::DriverLoadError),
}
} else {
Err(AsioDriverError::DriverLoadError)
}
}
}
/// Returns the number of input and output
/// channels for the active drivers
pub fn get_channels(&self) -> Channel {
let channel: Channel;
// Initialize memory for calls
let mut ins: c_long = 0;
let mut outs: c_long = 0;
unsafe {
get_drivers()
.asio_get_channels(&mut ins, &mut outs)
// TODO pass this result along
// and handle it without panic
.expect("failed to get channels");
channel = Channel {
ins: ins as i64,
outs: outs as i64,
};
}
channel
}
/// Get current sample rate of the active drivers
pub fn get_sample_rate(&self) -> SampleRate {
let sample_rate: SampleRate;
// Initialize memory for calls
let mut rate: c_double = 0.0f64;
unsafe {
get_drivers()
.asio_get_sample_rate(&mut rate)
// TODO pass this result along
// and handle it without panic
.expect("failed to get sample rate");
sample_rate = SampleRate { rate: rate as u32 };
}
sample_rate
}
/// Set the sample rate for the active drivers
pub fn set_sample_rate(&self, sample_rate: u32) -> Result<(), AsioError> {
// Initialize memory for calls
let rate: c_double = c_double::from(sample_rate);
unsafe { get_drivers().asio_set_sample_rate(rate) }
}
/// Can the drivers accept the given sample rate
pub fn can_sample_rate(&self, sample_rate: u32) -> bool {
// Initialize memory for calls
let rate: c_double = c_double::from(sample_rate);
// TODO this gives an error is it can't handle the sample
// rate but it can also give error for no divers
// Both should be handled.
unsafe { get_drivers().asio_can_sample_rate(rate).is_ok() }
}
/// Get the current data type of the active drivers.
/// Just queries a single channels type as all channels
/// have the same sample type.
pub fn get_data_type(&self) -> Result<AsioSampleType, AsioDriverError> {
// TODO make this a seperate call for input and output as
// it is possible that input and output have different sample types
// Initialize memory for calls
let mut channel_info = ai::ASIOChannelInfo {
// Which channel we are querying
channel: 0,
// Was it input or output
isInput: 0,
// Was it active
isActive: 0,
channelGroup: 0,
// The sample type
type_: 0,
name: [0 as c_char; 32],
};
unsafe {
match get_drivers().asio_get_channel_info(&mut channel_info) {
Ok(_) => num::FromPrimitive::from_i32(channel_info.type_)
.map_or(Err(AsioDriverError::TypeError), |t| Ok(t)),
Err(e) => {
println!("Error getting data type {}", e);
Err(AsioDriverError::DriverLoadError)
},
}
}
}
/// Prepare the input stream.
/// Because only the latest call
/// to ASIOCreateBuffers is relevant this
/// call will destroy all past active buffers
/// and recreate them. For this reason we take
/// the output stream if it exists.
/// num_channels is the number of input channels.
/// This returns a full AsioStreams with both input
/// and output if output was active.
pub fn prepare_input_stream(
&self, output: Option<AsioStream>, num_channels: usize,
) -> Result<AsioStreams, AsioDriverError> {
let buffer_infos = (0 .. num_channels)
.map(|i| AsioBufferInfo {
// These are output channels
is_input: 1,
// Channel index
channel_num: i as c_long,
// Double buffer. We don't know the type
// at this point
buffers: [std::ptr::null_mut(); 2],
}).collect();
// Create the streams
let streams = AsioStreams {
input: Some(AsioStream {
buffer_infos,
buffer_size: 0,
}),
output,
};
self.create_streams(streams)
}
/// Prepare the output stream.
/// Because only the latest call
/// to ASIOCreateBuffers is relevant this
/// call will destroy all past active buffers
/// and recreate them. For this reason we take
/// the input stream if it exists.
/// num_channels is the number of output channels.
/// This returns a full AsioStreams with both input
/// and output if input was active.
pub fn prepare_output_stream(
&self, input: Option<AsioStream>, num_channels: usize,
) -> Result<AsioStreams, AsioDriverError> {
// Initialize data for FFI
let buffer_infos = (0 .. num_channels)
.map(|i| AsioBufferInfo {
// These are outputs
is_input: 0,
// Channel index
channel_num: i as c_long,
// Pointer to each buffer. We don't know
// the type yet.
buffers: [std::ptr::null_mut(); 2],
}).collect();
// Create streams
let streams = AsioStreams {
output: Some(AsioStream {
buffer_infos,
buffer_size: 0,
}),
input,
};
self.create_streams(streams)
}
/// Creates the streams.
/// Both input and output streams
/// need to be created together as
/// a single slice of ASIOBufferInfo
fn create_streams(&self, streams: AsioStreams) -> Result<AsioStreams, AsioDriverError> {
let AsioStreams { input, output } = streams;
match (input, output) {
// Both stream exist.
(Some(input), Some(mut output)) => {
let split_point = input.buffer_infos.len();
let mut bi = input.buffer_infos;
// Append the output to the input channels
bi.append(&mut output.buffer_infos);
// Create the buffers.
// if successful then split the output
// and input again
self.create_buffers(bi).map(|(mut bi, buffer_size)| {
let out_bi = bi.split_off(split_point);
let in_bi = bi;
let output = Some(AsioStream {
buffer_infos: out_bi,
buffer_size,
});
let input = Some(AsioStream {
buffer_infos: in_bi,
buffer_size,
});
AsioStreams { output, input }
})
},
// Just input
(Some(input), None) => {
self.create_buffers(input.buffer_infos)
.map(|(buffer_infos, buffer_size)| {
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
AsioStreams {
input: Some(AsioStream {
buffer_infos,
buffer_size,
}),
output: None,
}
})
},
// Just output
(None, Some(output)) => {
self.create_buffers(output.buffer_infos)
.map(|(buffer_infos, buffer_size)| {
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
AsioStreams {
output: Some(AsioStream {
buffer_infos,
buffer_size,
}),
input: None,
}
})
},
// Impossible
(None, None) => panic!("Trying to create streams without preparing"),
}
}
/// Ask ASIO to allocate the buffers
/// and give the callback pointers.
/// This will destroy any already allocated
/// buffers.
/// The prefered buffer size from ASIO is used.
fn create_buffers(
&self, buffer_infos: Vec<AsioBufferInfo>,
) -> Result<(Vec<AsioBufferInfo>, c_long), AsioDriverError> {
let num_channels = buffer_infos.len();
let callbacks = AsioCallbacks {
buffer_switch: buffer_switch,
sample_rate_did_change: sample_rate_did_change,
asio_message: asio_message,
buffer_switch_time_info: buffer_switch_time_info,
};
let mut min_b_size: c_long = 0;
let mut max_b_size: c_long = 0;
let mut pref_b_size: c_long = 0;
let mut grans: c_long = 0;
let mut drivers = get_drivers();
unsafe {
// Get the buffer sizes
// min possilbe size
// max possible size
// preferred size
// granularity
drivers
.asio_get_buffer_size(
&mut min_b_size,
&mut max_b_size,
&mut pref_b_size,
&mut grans,
).expect("Failed getting buffers");
if pref_b_size > 0 {
// Convert Rust structs to opaque ASIO structs
let mut buffer_info_convert =
mem::transmute::<Vec<AsioBufferInfo>, Vec<ai::ASIOBufferInfo>>(buffer_infos);
let mut callbacks_convert =
mem::transmute::<AsioCallbacks, ai::ASIOCallbacks>(callbacks);
drivers
.asio_create_buffers(
buffer_info_convert.as_mut_ptr(),
num_channels as i32,
pref_b_size,
&mut callbacks_convert,
).map(|_| {
let buffer_infos = mem::transmute::<
Vec<ai::ASIOBufferInfo>,
Vec<AsioBufferInfo>,
>(buffer_info_convert);
(buffer_infos, pref_b_size)
}).map_err(|e| {
AsioDriverError::BufferError(format!(
"failed to create buffers, error code: {:?}",
e
))
})
} else {
Err(AsioDriverError::BufferError("bad buffer size".to_owned()))
}
}
}
}
/// If all drivers and streams are gone
/// clean up drivers
impl Drop for Drivers {
fn drop(&mut self) {
let count = STREAM_DRIVER_COUNT.fetch_sub(1, Ordering::SeqCst);
if count == 1 {
clean_up();
}
}
}
/// Required for Mutex
unsafe impl Send for AsioWrapper {}
/// Required for Mutex
unsafe impl Send for AsioStream {}
impl BufferCallback {
/// Calls the inner callback
fn run(&mut self, index: i32) {
let cb = &mut self.0;
cb(index);
}
}
/// Adds a callback to the list of active callbacks
pub fn set_callback<F: 'static>(callback: F) -> ()
where
F: FnMut(i32) + Send,
{
let mut bc = buffer_callback.lock().unwrap();
bc.push(Some(BufferCallback(Box::new(callback))));
}
/// Returns a list of all the ASIO devices.
/// This is used at the start to allow the
/// user to choose which device they want.
#[allow(unused_assignments)]
pub fn get_driver_list() -> Vec<String> {
// The most devices we can take
const MAX_DRIVERS: usize = 100;
// Max length for divers name
const CHAR_LEN: usize = 32;
// 2D array of driver names set to 0
let mut driver_names: [[c_char; CHAR_LEN]; MAX_DRIVERS] = [[0; CHAR_LEN]; MAX_DRIVERS];
// Pointer to each driver name
let mut p_driver_name: [*mut i8; MAX_DRIVERS] = [0 as *mut i8; MAX_DRIVERS];
for i in 0 .. MAX_DRIVERS {
p_driver_name[i] = driver_names[i].as_mut_ptr();
}
unsafe {
let num_drivers = ai::get_driver_names(p_driver_name.as_mut_ptr(), MAX_DRIVERS as i32);
(0 .. num_drivers)
.map(|i| {
let mut my_driver_name = CString::new("").unwrap();
let name = CStr::from_ptr(p_driver_name[i as usize]);
my_driver_name = name.to_owned();
my_driver_name
.into_string()
.expect("Failed to convert driver name")
}).collect()
}
}
/// Cleans up the drivers and
/// any allocations
pub fn clean_up() {
let mut drivers = get_drivers();
drivers.clean_up();
}
/// Starts input and output streams playing
pub fn play() {
unsafe {
// TODO handle result instead of printing
let result = get_drivers().asio_start();
println!("start result: {:?}", result);
}
}
/// Stops input and output streams playing
pub fn stop() {
unsafe {
// TODO handle result instead of printing
let result = get_drivers().asio_stop();
println!("stop result: {:?}", result);
}
}
/// All the actual calls to ASIO.
/// This is where we handle the state
/// and assert that all calls
/// happen in the correct state.
/// TODO it is possible to enforce most of this
/// at compile time using type parameters.
/// All calls have results that are converted
/// to Rust style results.
impl AsioWrapper {
/// Load the driver.
/// Unloads the previous driver.
/// Sets state to Loaded on success.
unsafe fn load(&mut self, raw: *mut i8) -> bool {
use self::AsioState::*;
self.clean_up();
if ai::load_asio_driver(raw) {
self.state = Loaded;
true
} else {
false
}
}
/// Unloads the current driver from ASIO
unsafe fn unload(&mut self) {
ai::remove_current_driver();
}
/// Initializes ASIO.
/// Needs to be already Loaded.
/// Initialized on success.
/// No-op if already Initialized or higher.
/// TODO should fail if Offline
unsafe fn asio_init(&mut self, di: &mut ai::ASIODriverInfo) -> Result<(), AsioError> {
if let AsioState::Loaded = self.state {
let result = ai::ASIOInit(di);
asio_result!(result).map(|_| self.state = AsioState::Initialized)
} else {
Ok(())
}
}
/// Gets the number of channels.
/// Needs to be atleast Loaded.
unsafe fn asio_get_channels(
&mut self, ins: &mut c_long, outs: &mut c_long,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetChannels(ins, outs);
asio_result!(result)
}
}
/// Gets the sample rate.
/// Needs to be atleast Loaded.
unsafe fn asio_get_sample_rate(&mut self, rate: &mut c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::get_sample_rate(rate);
asio_result!(result)
}
}
/// Sets the sample rate.
/// Needs to be atleast Loaded.
unsafe fn asio_set_sample_rate(&mut self, rate: c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::set_sample_rate(rate);
asio_result!(result)
}
}
/// Queries if the sample rate is possible.
/// Needs to be atleast Loaded.
unsafe fn asio_can_sample_rate(&mut self, rate: c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::can_sample_rate(rate);
asio_result!(result)
}
}
/// Get information about a channel.
/// Needs to be atleast Loaded.
unsafe fn asio_get_channel_info(
&mut self, ci: &mut ai::ASIOChannelInfo,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetChannelInfo(ci);
asio_result!(result)
}
}
/// Gets the buffer sizes.
/// Needs to be atleast Loaded.
unsafe fn asio_get_buffer_size(
&mut self, min_b_size: &mut c_long, max_b_size: &mut c_long, pref_b_size: &mut c_long,
grans: &mut c_long,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetBufferSize(min_b_size, max_b_size, pref_b_size, grans);
asio_result!(result)
}
}
/// Creates the buffers.
/// Needs to be atleast Loaded.
/// If Running or Prepared then old buffers
/// will be destoryed.
unsafe fn asio_create_buffers(
&mut self, buffer_info_convert: *mut ai::ASIOBufferInfo, num_channels: i32,
pref_b_size: c_long, callbacks_convert: &mut ai::ASIOCallbacks,
) -> Result<(), AsioError> {
use self::AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running => {
self.asio_stop().expect("Asio failed to stop");
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.state = Initialized;
},
Prepared => {
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.state = Initialized;
},
_ => (),
}
let result = ai::ASIOCreateBuffers(
buffer_info_convert,
num_channels,
pref_b_size,
callbacks_convert,
);
asio_result!(result).map(|_| self.state = AsioState::Prepared)
}
/// Releases buffers allocations.
/// Needs to be atleast Loaded.
/// No op if already released.
unsafe fn asio_dispose_buffers(&mut self) -> Result<(), AsioError> {
use self::AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running | Prepared => (),
Initialized => return Ok(()),
}
let result = ai::ASIODisposeBuffers();
asio_result!(result).map(|_| self.state = AsioState::Initialized)
}
/// Closes down ASIO.
/// Needs to be atleast Initialized.
unsafe fn asio_exit(&mut self) -> Result<(), AsioError> {
use self::AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
_ => (),
}
let result = ai::ASIOExit();
asio_result!(result).map(|_| self.state = AsioState::Offline)
}
/// Starts ASIO streams playing.
/// Needs to be atleast Initialized.
unsafe fn asio_start(&mut self) -> Result<(), AsioError> {
use self::AsioState::*;
match self.state {
Offline | Loaded | Initialized => return Err(AsioError::NoDrivers),
Running => return Ok(()),
Prepared => (),
}
let result = ai::ASIOStart();
asio_result!(result).map(|_| self.state = AsioState::Running)
}
/// Stops ASIO streams playing.
/// Needs to be Running.
/// No-op if already stopped.
unsafe fn asio_stop(&mut self) -> Result<(), AsioError> {
use self::AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running => (),
Initialized | Prepared => return Ok(()),
}
let result = ai::ASIOStop();
asio_result!(result).map(|_| self.state = AsioState::Prepared)
}
/// Cleans up the drivers based
/// on the current state of the driver.
fn clean_up(&mut self) {
match self.state {
AsioState::Offline => (),
AsioState::Loaded => {
unsafe {
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Initialized => {
unsafe {
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Prepared => {
unsafe {
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Running => {
unsafe {
self.asio_stop().expect("Asio failed to stop");
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
}
}
}

View File

@ -1,890 +1,15 @@
#![allow(non_camel_case_types)]
#[allow(unused_imports)]
#[macro_use]
extern crate lazy_static;
extern crate num;
#[allow(unused_imports)]
#[macro_use]
extern crate num_derive;
mod asio_import;
#[macro_use]
pub mod errors;
use errors::{AsioDriverError, AsioError, AsioErrorWrapper};
use std::ffi::CStr;
use std::ffi::CString;
use std::mem;
use std::os::raw::{c_char, c_double, c_long, c_void};
use std::sync::atomic::{AtomicBool, AtomicUsize, Ordering};
use std::sync::{Mutex, MutexGuard};
// Bindings import
use asio_import as ai;
// TODO I dont think this is needed anymore
pub struct CbArgs<S, D> {
pub stream_id: S,
pub data: D,
}
/// Holds the pointer to the callbacks that come from cpal
struct BufferCallback(Box<FnMut(i32) + Send>);
/// A global way to access all the callbacks.
/// This is required because of how ASIO
/// calls the buffer_switch function.
/// Options are used so that when a callback is
/// removed we don't change the Vec indicies.
/// The indicies are how we match a callback
/// with a stream.
lazy_static! {
static ref buffer_callback: Mutex<Vec<Option<BufferCallback>>> = Mutex::new(Vec::new());
}
/// Globally available state of the ASIO driver.
/// This allows all calls the the driver to ensure
/// they are calling in the correct state.
/// It also prevents multiple calls happening at once.
lazy_static! {
static ref ASIO_DRIVERS: Mutex<AsioWrapper> = Mutex::new(AsioWrapper {
state: AsioState::Offline,
});
}
/// Count of active device and streams.
/// Used to clean up the driver connection
/// when there are no active connections.
static STREAM_DRIVER_COUNT: AtomicUsize = AtomicUsize::new(0);
/// Tracks which buffer needs to be silenced.
pub static SILENCE_FIRST: AtomicBool = AtomicBool::new(false);
pub static SILENCE_SECOND: AtomicBool = AtomicBool::new(false);
/// Amount of input and output
/// channels available.
#[derive(Debug)]
pub struct Channel {
pub ins: i64,
pub outs: i64,
}
/// Sample rate of the ASIO device.
#[derive(Debug)]
pub struct SampleRate {
pub rate: u32,
}
/// A marker type to make sure
/// all calls to the driver have an
/// active connection.
#[derive(Debug, Clone)]
pub struct Drivers;
/// Tracks the current state of the
/// ASIO drivers.
#[derive(Debug)]
struct AsioWrapper {
state: AsioState,
}
/// All possible states of the
/// ASIO driver. Mapped to the
/// FSM in the ASIO SDK docs.
#[derive(Debug)]
enum AsioState {
Offline,
Loaded,
Initialized,
Prepared,
Running,
}
/// Input and Output streams.
/// There is only ever max one
/// input and one output. Only one
/// is required.
pub struct AsioStreams {
pub input: Option<AsioStream>,
pub output: Option<AsioStream>,
}
/// A stream to ASIO.
/// Contains the buffers.
pub struct AsioStream {
/// A Double buffer per channel
pub buffer_infos: Vec<AsioBufferInfo>,
/// Size of each buffer
pub buffer_size: i32,
}
/// All the possible types from ASIO.
/// This is a direct copy of the ASIOSampleType
/// inside ASIO SDK.
#[derive(Debug, FromPrimitive)]
#[repr(C)]
pub enum AsioSampleType {
ASIOSTInt16MSB = 0,
ASIOSTInt24MSB = 1, // used for 20 bits as well
ASIOSTInt32MSB = 2,
ASIOSTFloat32MSB = 3, // IEEE 754 32 bit float
ASIOSTFloat64MSB = 4, // IEEE 754 64 bit double float
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can be more easily used with these
ASIOSTInt32MSB16 = 8, // 32 bit data with 16 bit alignment
ASIOSTInt32MSB18 = 9, // 32 bit data with 18 bit alignment
ASIOSTInt32MSB20 = 10, // 32 bit data with 20 bit alignment
ASIOSTInt32MSB24 = 11, // 32 bit data with 24 bit alignment
ASIOSTInt16LSB = 16,
ASIOSTInt24LSB = 17, // used for 20 bits as well
ASIOSTInt32LSB = 18,
ASIOSTFloat32LSB = 19, // IEEE 754 32 bit float, as found on Intel x86 architecture
ASIOSTFloat64LSB = 20, // IEEE 754 64 bit double float, as found on Intel x86 architecture
// these are used for 32 bit data buffer, with different alignment of the data inside
// 32 bit PCI bus systems can more easily used with these
ASIOSTInt32LSB16 = 24, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB18 = 25, // 32 bit data with 18 bit alignment
ASIOSTInt32LSB20 = 26, // 32 bit data with 20 bit alignment
ASIOSTInt32LSB24 = 27, // 32 bit data with 24 bit alignment
// ASIO DSD format.
ASIOSTDSDInt8LSB1 = 32, // DSD 1 bit data, 8 samples per byte. First sample in Least significant bit.
ASIOSTDSDInt8MSB1 = 33, // DSD 1 bit data, 8 samples per byte. First sample in Most significant bit.
ASIOSTDSDInt8NER8 = 40, // DSD 8 bit data, 1 sample per byte. No Endianness required.
ASIOSTLastEntry,
}
/// Gives information about buffers
/// Receives pointers to buffers
#[derive(Debug, Copy, Clone)]
#[repr(C)]
pub struct AsioBufferInfo {
/// 0 for output 1 for input
pub is_input: c_long,
/// Which channel. Starts at 0
pub channel_num: c_long,
/// Pointer to each half of the double buffer.
pub buffers: [*mut c_void; 2],
}
/// Callbacks that ASIO calls
#[repr(C)]
struct AsioCallbacks {
buffer_switch: extern "C" fn(double_buffer_index: c_long, direct_process: c_long) -> (),
sample_rate_did_change: extern "C" fn(s_rate: c_double) -> (),
asio_message:
extern "C" fn(selector: c_long, value: c_long, message: *mut (), opt: *mut c_double)
-> c_long,
buffer_switch_time_info: extern "C" fn(
params: *mut ai::ASIOTime,
double_buffer_index: c_long,
direct_process: c_long,
) -> *mut ai::ASIOTime,
}
/// This is called by ASIO.
/// Here we run the callback for each stream.
/// double_buffer_index is either 0 or 1
/// indicating which buffer to fill
extern "C" fn buffer_switch(double_buffer_index: c_long, _direct_process: c_long) -> () {
// This lock is probably unavoidable
// but locks in the audio stream is not great
let mut bcs = buffer_callback.lock().unwrap();
for mut bc in bcs.iter_mut() {
if let Some(ref mut bc) = bc {
bc.run(double_buffer_index);
}
}
}
/// Idicates the sample rate has changed
/// TODO Change the sample rate when this
/// is called.
extern "C" fn sample_rate_did_change(_s_rate: c_double) -> () {}
/// Messages for ASIO
/// This is not currently used
extern "C" fn asio_message(
_selector: c_long, _value: c_long, _message: *mut (), _opt: *mut c_double,
) -> c_long {
// TODO Impliment this to give proper responses
4 as c_long
}
/// Similar to buffer switch but with time info
/// Not currently used
extern "C" fn buffer_switch_time_info(
params: *mut ai::ASIOTime, _double_buffer_index: c_long, _direct_process: c_long,
) -> *mut ai::ASIOTime {
params
}
/// Helper function for getting the drivers.
/// Note this is a lock.
fn get_drivers() -> MutexGuard<'static, AsioWrapper> {
ASIO_DRIVERS.lock().unwrap()
}
impl Drivers {
/// Load the drivers from a driver name.
/// This will destroy the old drivers.
#[allow(unused_assignments)]
pub fn load(driver_name: &str) -> Result<Self, AsioDriverError> {
let mut drivers = get_drivers();
// Make owned CString to send to load driver
let mut my_driver_name = CString::new(driver_name).expect("Can't go from str to CString");
let raw = my_driver_name.into_raw();
let mut driver_info = ai::ASIODriverInfo {
_bindgen_opaque_blob: [0u32; 43],
};
unsafe {
// Destroy old drivers and load new drivers.
let load_result = drivers.load(raw);
// Take back ownership
my_driver_name = CString::from_raw(raw);
if load_result {
// Initialize ASIO
match drivers.asio_init(&mut driver_info) {
Ok(_) => {
// If it worked then add a active connection to the drivers
// TODO Make sure this is decremented when old drivers are dropped
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
Ok(Drivers)
},
Err(_) => Err(AsioDriverError::DriverLoadError),
}
} else {
Err(AsioDriverError::DriverLoadError)
}
}
}
/// Returns the number of input and output
/// channels for the active drivers
pub fn get_channels(&self) -> Channel {
let channel: Channel;
// Initialize memory for calls
let mut ins: c_long = 0;
let mut outs: c_long = 0;
unsafe {
get_drivers()
.asio_get_channels(&mut ins, &mut outs)
// TODO pass this result along
// and handle it without panic
.expect("failed to get channels");
channel = Channel {
ins: ins as i64,
outs: outs as i64,
};
}
channel
}
/// Get current sample rate of the active drivers
pub fn get_sample_rate(&self) -> SampleRate {
let sample_rate: SampleRate;
// Initialize memory for calls
let mut rate: c_double = 0.0f64;
unsafe {
get_drivers()
.asio_get_sample_rate(&mut rate)
// TODO pass this result along
// and handle it without panic
.expect("failed to get sample rate");
sample_rate = SampleRate { rate: rate as u32 };
}
sample_rate
}
/// Set the sample rate for the active drivers
pub fn set_sample_rate(&self, sample_rate: u32) -> Result<(), AsioError> {
// Initialize memory for calls
let rate: c_double = c_double::from(sample_rate);
unsafe { get_drivers().asio_set_sample_rate(rate) }
}
/// Can the drivers accept the given sample rate
pub fn can_sample_rate(&self, sample_rate: u32) -> bool {
// Initialize memory for calls
let rate: c_double = c_double::from(sample_rate);
// TODO this gives an error is it can't handle the sample
// rate but it can also give error for no divers
// Both should be handled.
unsafe { get_drivers().asio_can_sample_rate(rate).is_ok() }
}
/// Get the current data type of the active drivers.
/// Just queries a single channels type as all channels
/// have the same sample type.
pub fn get_data_type(&self) -> Result<AsioSampleType, AsioDriverError> {
// TODO make this a seperate call for input and output as
// it is possible that input and output have different sample types
// Initialize memory for calls
let mut channel_info = ai::ASIOChannelInfo {
// Which channel we are querying
channel: 0,
// Was it input or output
isInput: 0,
// Was it active
isActive: 0,
channelGroup: 0,
// The sample type
type_: 0,
name: [0 as c_char; 32],
};
unsafe {
match get_drivers().asio_get_channel_info(&mut channel_info) {
Ok(_) => num::FromPrimitive::from_i32(channel_info.type_)
.map_or(Err(AsioDriverError::TypeError), |t| Ok(t)),
Err(e) => {
println!("Error getting data type {}", e);
Err(AsioDriverError::DriverLoadError)
},
}
}
}
/// Prepare the input stream.
/// Because only the latest call
/// to ASIOCreateBuffers is relevant this
/// call will destroy all past active buffers
/// and recreate them. For this reason we take
/// the output stream if it exists.
/// num_channels is the number of input channels.
/// This returns a full AsioStreams with both input
/// and output if output was active.
pub fn prepare_input_stream(
&self, output: Option<AsioStream>, num_channels: usize,
) -> Result<AsioStreams, AsioDriverError> {
let buffer_infos = (0 .. num_channels)
.map(|i| AsioBufferInfo {
// These are output channels
is_input: 1,
// Channel index
channel_num: i as c_long,
// Double buffer. We don't know the type
// at this point
buffers: [std::ptr::null_mut(); 2],
}).collect();
// Create the streams
let streams = AsioStreams {
input: Some(AsioStream {
buffer_infos,
buffer_size: 0,
}),
output,
};
self.create_streams(streams)
}
/// Prepare the output stream.
/// Because only the latest call
/// to ASIOCreateBuffers is relevant this
/// call will destroy all past active buffers
/// and recreate them. For this reason we take
/// the input stream if it exists.
/// num_channels is the number of output channels.
/// This returns a full AsioStreams with both input
/// and output if input was active.
pub fn prepare_output_stream(
&self, input: Option<AsioStream>, num_channels: usize,
) -> Result<AsioStreams, AsioDriverError> {
// Initialize data for FFI
let buffer_infos = (0 .. num_channels)
.map(|i| AsioBufferInfo {
// These are outputs
is_input: 0,
// Channel index
channel_num: i as c_long,
// Pointer to each buffer. We don't know
// the type yet.
buffers: [std::ptr::null_mut(); 2],
}).collect();
// Create streams
let streams = AsioStreams {
output: Some(AsioStream {
buffer_infos,
buffer_size: 0,
}),
input,
};
self.create_streams(streams)
}
/// Creates the streams.
/// Both input and output streams
/// need to be created together as
/// a single slice of ASIOBufferInfo
fn create_streams(&self, streams: AsioStreams) -> Result<AsioStreams, AsioDriverError> {
let AsioStreams { input, output } = streams;
match (input, output) {
// Both stream exist.
(Some(input), Some(mut output)) => {
let split_point = input.buffer_infos.len();
let mut bi = input.buffer_infos;
// Append the output to the input channels
bi.append(&mut output.buffer_infos);
// Create the buffers.
// if successful then split the output
// and input again
self.create_buffers(bi).map(|(mut bi, buffer_size)| {
let out_bi = bi.split_off(split_point);
let in_bi = bi;
let output = Some(AsioStream {
buffer_infos: out_bi,
buffer_size,
});
let input = Some(AsioStream {
buffer_infos: in_bi,
buffer_size,
});
AsioStreams { output, input }
})
},
// Just input
(Some(input), None) => {
self.create_buffers(input.buffer_infos)
.map(|(buffer_infos, buffer_size)| {
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
AsioStreams {
input: Some(AsioStream {
buffer_infos,
buffer_size,
}),
output: None,
}
})
},
// Just output
(None, Some(output)) => {
self.create_buffers(output.buffer_infos)
.map(|(buffer_infos, buffer_size)| {
STREAM_DRIVER_COUNT.fetch_add(1, Ordering::SeqCst);
AsioStreams {
output: Some(AsioStream {
buffer_infos,
buffer_size,
}),
input: None,
}
})
},
// Impossible
(None, None) => panic!("Trying to create streams without preparing"),
}
}
/// Ask ASIO to allocate the buffers
/// and give the callback pointers.
/// This will destroy any already allocated
/// buffers.
/// The prefered buffer size from ASIO is used.
fn create_buffers(
&self, buffer_infos: Vec<AsioBufferInfo>,
) -> Result<(Vec<AsioBufferInfo>, c_long), AsioDriverError> {
let num_channels = buffer_infos.len();
let callbacks = AsioCallbacks {
buffer_switch: buffer_switch,
sample_rate_did_change: sample_rate_did_change,
asio_message: asio_message,
buffer_switch_time_info: buffer_switch_time_info,
};
let mut min_b_size: c_long = 0;
let mut max_b_size: c_long = 0;
let mut pref_b_size: c_long = 0;
let mut grans: c_long = 0;
let mut drivers = get_drivers();
unsafe {
// Get the buffer sizes
// min possilbe size
// max possible size
// preferred size
// granularity
drivers
.asio_get_buffer_size(
&mut min_b_size,
&mut max_b_size,
&mut pref_b_size,
&mut grans,
).expect("Failed getting buffers");
if pref_b_size > 0 {
// Convert Rust structs to opaque ASIO structs
let mut buffer_info_convert =
mem::transmute::<Vec<AsioBufferInfo>, Vec<ai::ASIOBufferInfo>>(buffer_infos);
let mut callbacks_convert =
mem::transmute::<AsioCallbacks, ai::ASIOCallbacks>(callbacks);
drivers
.asio_create_buffers(
buffer_info_convert.as_mut_ptr(),
num_channels as i32,
pref_b_size,
&mut callbacks_convert,
).map(|_| {
let buffer_infos = mem::transmute::<
Vec<ai::ASIOBufferInfo>,
Vec<AsioBufferInfo>,
>(buffer_info_convert);
(buffer_infos, pref_b_size)
}).map_err(|e| {
AsioDriverError::BufferError(format!(
"failed to create buffers, error code: {:?}",
e
))
})
} else {
Err(AsioDriverError::BufferError("bad buffer size".to_owned()))
}
}
}
}
/// If all drivers and streams are gone
/// clean up drivers
impl Drop for Drivers {
fn drop(&mut self) {
let count = STREAM_DRIVER_COUNT.fetch_sub(1, Ordering::SeqCst);
if count == 1 {
clean_up();
}
}
}
/// Required for Mutex
unsafe impl Send for AsioWrapper {}
/// Required for Mutex
unsafe impl Send for AsioStream {}
impl BufferCallback {
/// Calls the inner callback
fn run(&mut self, index: i32) {
let cb = &mut self.0;
cb(index);
}
}
/// Adds a callback to the list of active callbacks
pub fn set_callback<F: 'static>(callback: F) -> ()
where
F: FnMut(i32) + Send,
{
let mut bc = buffer_callback.lock().unwrap();
bc.push(Some(BufferCallback(Box::new(callback))));
}
/// Returns a list of all the ASIO devices.
/// This is used at the start to allow the
/// user to choose which device they want.
#[allow(unused_assignments)]
pub fn get_driver_list() -> Vec<String> {
// The most devices we can take
const MAX_DRIVERS: usize = 100;
// Max length for divers name
const CHAR_LEN: usize = 32;
// 2D array of driver names set to 0
let mut driver_names: [[c_char; CHAR_LEN]; MAX_DRIVERS] = [[0; CHAR_LEN]; MAX_DRIVERS];
// Pointer to each driver name
let mut p_driver_name: [*mut i8; MAX_DRIVERS] = [0 as *mut i8; MAX_DRIVERS];
for i in 0 .. MAX_DRIVERS {
p_driver_name[i] = driver_names[i].as_mut_ptr();
}
unsafe {
let num_drivers = ai::get_driver_names(p_driver_name.as_mut_ptr(), MAX_DRIVERS as i32);
(0 .. num_drivers)
.map(|i| {
let mut my_driver_name = CString::new("").unwrap();
let name = CStr::from_ptr(p_driver_name[i as usize]);
my_driver_name = name.to_owned();
my_driver_name
.into_string()
.expect("Failed to convert driver name")
}).collect()
}
}
/// Cleans up the drivers and
/// any allocations
pub fn clean_up() {
let mut drivers = get_drivers();
drivers.clean_up();
}
/// Starts input and output streams playing
pub fn play() {
unsafe {
// TODO handle result instead of printing
let result = get_drivers().asio_start();
println!("start result: {:?}", result);
}
}
/// Stops input and output streams playing
pub fn stop() {
unsafe {
// TODO handle result instead of printing
let result = get_drivers().asio_stop();
println!("stop result: {:?}", result);
}
}
/// All the actual calls to ASIO.
/// This is where we handle the state
/// and assert that all calls
/// happen in the correct state.
/// TODO it is possible to enforce most of this
/// at compile time using type parameters.
/// All calls have results that are converted
/// to Rust style results.
impl AsioWrapper {
/// Load the driver.
/// Unloads the previous driver.
/// Sets state to Loaded on success.
unsafe fn load(&mut self, raw: *mut i8) -> bool {
use AsioState::*;
self.clean_up();
if ai::load_asio_driver(raw) {
self.state = Loaded;
true
} else {
false
}
}
/// Unloads the current driver from ASIO
unsafe fn unload(&mut self) {
ai::remove_current_driver();
}
/// Initializes ASIO.
/// Needs to be already Loaded.
/// Initialized on success.
/// No-op if already Initialized or higher.
/// TODO should fail if Offline
unsafe fn asio_init(&mut self, di: &mut ai::ASIODriverInfo) -> Result<(), AsioError> {
if let AsioState::Loaded = self.state {
let result = ai::ASIOInit(di);
asio_result!(result).map(|_| self.state = AsioState::Initialized)
} else {
Ok(())
}
}
/// Gets the number of channels.
/// Needs to be atleast Loaded.
unsafe fn asio_get_channels(
&mut self, ins: &mut c_long, outs: &mut c_long,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetChannels(ins, outs);
asio_result!(result)
}
}
/// Gets the sample rate.
/// Needs to be atleast Loaded.
unsafe fn asio_get_sample_rate(&mut self, rate: &mut c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::get_sample_rate(rate);
asio_result!(result)
}
}
/// Sets the sample rate.
/// Needs to be atleast Loaded.
unsafe fn asio_set_sample_rate(&mut self, rate: c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::set_sample_rate(rate);
asio_result!(result)
}
}
/// Queries if the sample rate is possible.
/// Needs to be atleast Loaded.
unsafe fn asio_can_sample_rate(&mut self, rate: c_double) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::can_sample_rate(rate);
asio_result!(result)
}
}
/// Get information about a channel.
/// Needs to be atleast Loaded.
unsafe fn asio_get_channel_info(
&mut self, ci: &mut ai::ASIOChannelInfo,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetChannelInfo(ci);
asio_result!(result)
}
}
/// Gets the buffer sizes.
/// Needs to be atleast Loaded.
unsafe fn asio_get_buffer_size(
&mut self, min_b_size: &mut c_long, max_b_size: &mut c_long, pref_b_size: &mut c_long,
grans: &mut c_long,
) -> Result<(), AsioError> {
if let AsioState::Offline = self.state {
Err(AsioError::NoDrivers)
} else {
let result = ai::ASIOGetBufferSize(min_b_size, max_b_size, pref_b_size, grans);
asio_result!(result)
}
}
/// Creates the buffers.
/// Needs to be atleast Loaded.
/// If Running or Prepared then old buffers
/// will be destoryed.
unsafe fn asio_create_buffers(
&mut self, buffer_info_convert: *mut ai::ASIOBufferInfo, num_channels: i32,
pref_b_size: c_long, callbacks_convert: &mut ai::ASIOCallbacks,
) -> Result<(), AsioError> {
use AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running => {
self.asio_stop().expect("Asio failed to stop");
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.state = Initialized;
},
Prepared => {
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.state = Initialized;
},
_ => (),
}
let result = ai::ASIOCreateBuffers(
buffer_info_convert,
num_channels,
pref_b_size,
callbacks_convert,
);
asio_result!(result).map(|_| self.state = AsioState::Prepared)
}
/// Releases buffers allocations.
/// Needs to be atleast Loaded.
/// No op if already released.
unsafe fn asio_dispose_buffers(&mut self) -> Result<(), AsioError> {
use AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running | Prepared => (),
Initialized => return Ok(()),
}
let result = ai::ASIODisposeBuffers();
asio_result!(result).map(|_| self.state = AsioState::Initialized)
}
/// Closes down ASIO.
/// Needs to be atleast Loaded.
unsafe fn asio_exit(&mut self) -> Result<(), AsioError> {
use AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
_ => (),
}
let result = ai::ASIOExit();
asio_result!(result).map(|_| self.state = AsioState::Offline)
}
/// Starts ASIO streams playing.
/// Needs to be atleast Initialized.
unsafe fn asio_start(&mut self) -> Result<(), AsioError> {
use AsioState::*;
match self.state {
Offline | Loaded | Initialized => return Err(AsioError::NoDrivers),
Running => return Ok(()),
Prepared => (),
}
let result = ai::ASIOStart();
asio_result!(result).map(|_| self.state = AsioState::Running)
}
/// Stops ASIO streams playing.
/// Needs to be Running.
/// No-op if already stopped.
unsafe fn asio_stop(&mut self) -> Result<(), AsioError> {
use AsioState::*;
match self.state {
Offline | Loaded => return Err(AsioError::NoDrivers),
Running => (),
Initialized | Prepared => return Ok(()),
}
let result = ai::ASIOStop();
asio_result!(result).map(|_| self.state = AsioState::Prepared)
}
/// Cleans up the drivers based
/// on the current state of the driver.
fn clean_up(&mut self) {
match self.state {
AsioState::Offline => (),
AsioState::Loaded => {
unsafe {
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Initialized => {
unsafe {
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Prepared => {
unsafe {
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
AsioState::Running => {
unsafe {
self.asio_stop().expect("Asio failed to stop");
self.asio_dispose_buffers()
.expect("Failed to dispose buffers");
self.asio_exit().expect("Failed to exit asio");
self.unload();
}
self.state = AsioState::Offline;
},
}
}
}
#[cfg(asio)]
pub mod bindings;
#[cfg(asio)]
pub use bindings::*;

12
build.rs Normal file
View File

@ -0,0 +1,12 @@
use std::env;
const CPAL_ASIO_DIR: &'static str = "CPAL_ASIO_DIR";
fn main() {
// If ASIO directory isn't set silently return early
// otherwise set the asio config flag
match env::var(CPAL_ASIO_DIR) {
Err(_) => return,
Ok(_) => println!("cargo:rustc-cfg=asio"),
};
}

View File

@ -16,6 +16,7 @@ pub fn which_backend() -> BackEnd {
(*BACK_END.lock().unwrap()).clone()
}
#[cfg(asio)]
pub fn use_asio_backend() -> Result<(), BackEndError> {
*BACK_END.lock().unwrap() = BackEnd::Asio;
Ok(())

View File

@ -1,4 +1,3 @@
extern crate asio_sys as sys;
use std;
pub type SupportedInputFormats = std::vec::IntoIter<SupportedFormat>;
pub type SupportedOutputFormats = std::vec::IntoIter<SupportedFormat>;
@ -10,6 +9,7 @@ use FormatsEnumerationError;
use SampleFormat;
use SampleRate;
use SupportedFormat;
use super::sys;
/// A ASIO Device
#[derive(Debug, Clone)]
@ -133,11 +133,7 @@ impl Device {
impl Default for Devices {
fn default() -> Devices {
// Remove offline drivers
let driver_names: Vec<String> = sys::get_driver_list()
.into_iter()
.filter(|name| sys::Drivers::load(&name).is_ok())
.collect();
let driver_names = online_devices();
Devices {
drivers: driver_names.into_iter(),
}
@ -168,7 +164,17 @@ impl Iterator for Devices {
/// Asio doesn't have a concept of default
/// so returning first in list as default
pub fn default_input_device() -> Option<Device> {
let mut driver_list = sys::get_driver_list();
first_device()
}
/// Asio doesn't have a concept of default
/// so returning first in list as default
pub fn default_output_device() -> Option<Device> {
first_device()
}
fn first_device() -> Option<Device> {
let mut driver_list = online_devices();
match driver_list.pop() {
Some(name) => sys::Drivers::load(&name)
.or_else(|e| {
@ -180,17 +186,10 @@ pub fn default_input_device() -> Option<Device> {
}
}
/// Asio doesn't have a concept of default
/// so returning first in list as default
pub fn default_output_device() -> Option<Device> {
let mut driver_list = sys::get_driver_list();
match driver_list.pop() {
Some(name) => sys::Drivers::load(&name)
.or_else(|e| {
eprintln!("{}", e);
Err(e)
}).ok()
.map(|drivers| Device { drivers, name }),
None => None,
}
}
/// Remove offline drivers
fn online_devices() -> Vec<String> {
sys::get_driver_list()
.into_iter()
.filter(|name| sys::Drivers::load(&name).is_ok())
.collect()
}