Refactor build_input_stream callback to, like recent output refactor

This commit is contained in:
mitchmindtree 2019-06-29 03:45:31 +10:00
parent cc70a10c12
commit 4dafb212fb
1 changed files with 197 additions and 346 deletions

View File

@ -2,7 +2,6 @@ extern crate asio_sys as sys;
extern crate num_traits; extern crate num_traits;
use self::num_traits::PrimInt; use self::num_traits::PrimInt;
use super::asio_utils as au;
use super::Device; use super::Device;
use std; use std;
use std::mem; use std::mem;
@ -28,6 +27,7 @@ trait Silence {
/// Constraints on the interleaved sample buffer format required by the CPAL API. /// Constraints on the interleaved sample buffer format required by the CPAL API.
trait InterleavedSample: Clone + Copy + Silence { trait InterleavedSample: Clone + Copy + Silence {
fn unknown_type_input_buffer(&[Self]) -> UnknownTypeInputBuffer;
fn unknown_type_output_buffer(&mut [Self]) -> UnknownTypeOutputBuffer; fn unknown_type_output_buffer(&mut [Self]) -> UnknownTypeOutputBuffer;
} }
@ -40,7 +40,7 @@ pub struct EventLoop {
asio_streams: Arc<Mutex<sys::AsioStreams>>, asio_streams: Arc<Mutex<sys::AsioStreams>>,
/// List of all CPAL streams /// List of all CPAL streams
cpal_streams: Arc<Mutex<Vec<Option<Stream>>>>, cpal_streams: Arc<Mutex<Vec<Option<Stream>>>>,
/// Total stream count /// Total stream count.
stream_count: AtomicUsize, stream_count: AtomicUsize,
/// The CPAL callback that the user gives to fill the buffers. /// The CPAL callback that the user gives to fill the buffers.
callbacks: Arc<Mutex<Option<&'static mut (FnMut(StreamId, StreamDataResult) + Send)>>>, callbacks: Arc<Mutex<Option<&'static mut (FnMut(StreamId, StreamDataResult) + Send)>>>,
@ -63,16 +63,6 @@ struct Stream {
driver: Arc<sys::Driver>, driver: Arc<sys::Driver>,
} }
struct Buffers {
interleaved: Vec<u8>,
non_interleaved: Vec<u8>,
}
enum Endian {
Little,
Big,
}
// Used to keep track of whether or not the current current asio stream buffer requires // Used to keep track of whether or not the current current asio stream buffer requires
// being silencing before summing audio. // being silencing before summing audio.
#[derive(Default)] #[derive(Default)]
@ -217,328 +207,174 @@ impl EventLoop {
device: &Device, device: &Device,
format: &Format, format: &Format,
) -> Result<StreamId, BuildStreamError> { ) -> Result<StreamId, BuildStreamError> {
unimplemented!() let Device { driver, .. } = device;
// let Device { driver, .. } = device; let num_channels = format.channels.clone();
// let num_channels = format.channels.clone(); let stream_type = driver.data_type().map_err(build_stream_err)?;
// let stream_type = driver.data_type().map_err(build_stream_err)?; let stream_buffer_size = self.get_input_stream(&driver, format, device)?;
// let stream_buffer_size = self.get_input_stream(&driver, format, device)?; let cpal_num_samples = stream_buffer_size * num_channels as usize;
// let cpal_num_samples = stream_buffer_size * num_channels as usize; let count = self.stream_count.fetch_add(1, Ordering::SeqCst);
// let count = self.stream_count.fetch_add(1, Ordering::SeqCst); let asio_streams = self.asio_streams.clone();
// let asio_streams = self.asio_streams.clone(); let cpal_streams = self.cpal_streams.clone();
// let cpal_streams = self.cpal_streams.clone(); let callbacks = self.callbacks.clone();
// let callbacks = self.callbacks.clone();
// let channel_len = cpal_num_samples / num_channels as usize; // Create the buffer depending on the size of the data type.
let stream_id = StreamId(count);
let data_type = format.data_type;
let len_bytes = cpal_num_samples * data_type.sample_size();
let mut interleaved = vec![0u8; len_bytes];
// // Create buffers depending on data type // Set the input callback.
// // TODO the naming of cpal and channel is confusing. // This is most performance critical part of the ASIO bindings.
// // change it to: sys::set_callback(move |buffer_index| unsafe {
// // cpal -> interleaved // If not playing return early.
// // channels -> per_channel // TODO: Don't assume `count` is valid - we should search for the matching `StreamId`.
// let mut buffers = match format.data_type { if let Some(s) = cpal_streams.lock().unwrap().get(count) {
// SampleFormat::I16 => Buffers { if let Some(s) = s {
// i16_buff: I16Buffer { if !s.playing {
// cpal: vec![0 as i16; cpal_num_samples], return;
// channel: (0..num_channels) }
// .map(|_| Vec::with_capacity(channel_len)) }
// .collect(), }
// },
// f32_buff: F32Buffer::default(),
// },
// SampleFormat::F32 => Buffers {
// i16_buff: I16Buffer::default(),
// f32_buff: F32Buffer {
// cpal: vec![0 as f32; cpal_num_samples],
// channel: (0..num_channels)
// .map(|_| Vec::with_capacity(channel_len))
// .collect(),
// },
// },
// _ => unimplemented!(),
// };
// // Set the input callback. // Acquire the stream and callback.
// // This is most performance critical part of the ASIO bindings. let stream_lock = asio_streams.lock().unwrap();
// sys::set_callback(move |index| unsafe { let ref asio_stream = match stream_lock.input {
// // if not playing return early Some(ref asio_stream) => asio_stream,
// { None => return,
// if let Some(s) = cpal_streams.lock().unwrap().get(count) { };
// if let Some(s) = s { let mut callbacks = callbacks.lock().unwrap();
// if !s.playing { let callback = match callbacks.as_mut() {
// return (); Some(callback) => callback,
// } None => return,
// } };
// }
// }
// // Get the stream
// let stream_lock = asio_streams.lock().unwrap();
// let ref asio_stream = match stream_lock.input {
// Some(ref asio_stream) => asio_stream,
// None => return (),
// };
// // Get the callback /// 1. Write from the ASIO buffer to the interleaved CPAL buffer.
// let mut callbacks = callbacks.lock().unwrap(); /// 2. Deliver the CPAL buffer to the user callback.
unsafe fn process_input_callback<A, B, F, G>(
stream_id: StreamId,
callback: &mut (dyn FnMut(StreamId, StreamDataResult) + Send),
interleaved: &mut [u8],
asio_stream: &sys::AsioStream,
buffer_index: usize,
from_endianness: F,
to_cpal_sample: G,
)
where
A: AsioSample,
B: InterleavedSample,
F: Fn(A) -> A,
G: Fn(A) -> B,
{
// 1. Write the ASIO channels to the CPAL buffer.
let interleaved: &mut [B] = cast_slice_mut(interleaved);
let n_channels = interleaved.len() / asio_stream.buffer_size as usize;
for ch_ix in 0..n_channels {
let asio_channel = asio_channel_slice::<A>(asio_stream, buffer_index, ch_ix);
for (frame, s_asio) in interleaved.chunks_mut(n_channels).zip(asio_channel) {
frame[ch_ix] = to_cpal_sample(from_endianness(*s_asio));
}
}
// // Theres only a single callback because theres only one event loop // 2. Deliver the interleaved buffer to the callback.
// let callback = match callbacks.as_mut() { callback(
// Some(callback) => callback, stream_id,
// None => return (), Ok(StreamData::Input { buffer: B::unknown_type_input_buffer(interleaved) }),
// }; );
}
// // Macro to convert sample from ASIO to CPAL type match (&stream_type, data_type) {
// macro_rules! convert_sample { (&sys::AsioSampleType::ASIOSTInt16LSB, SampleFormat::I16) => {
// // floats types required different conversion process_input_callback::<i16, i16, _, _>(
// (f32, stream_id,
// f32, callback,
// $SampleTypeIdent:ident, &mut interleaved,
// $Sample:expr asio_stream,
// ) => { buffer_index as usize,
// *$Sample from_le,
// }; std::convert::identity::<i16>,
// (f64, );
// f64, }
// $SampleTypeIdent:ident, (&sys::AsioSampleType::ASIOSTInt16MSB, SampleFormat::I16) => {
// $Sample:expr process_input_callback::<i16, i16, _, _>(
// ) => { stream_id,
// *$Sample callback,
// }; &mut interleaved,
// (f64, asio_stream,
// f32, buffer_index as usize,
// $SampleTypeIdent:ident, from_be,
// $Sample:expr std::convert::identity::<i16>,
// ) => { );
// *$Sample as f32 }
// };
// (f32,
// f64,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// *$Sample as f64
// };
// ($AsioTypeIdent:ident,
// f32,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// (*$Sample as f64 / ::std::$AsioTypeIdent::MAX as f64) as f32
// };
// ($AsioTypeIdent:ident,
// f64,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// *$Sample as f64 / ::std::$AsioTypeIdent::MAX as f64
// };
// (f32,
// $SampleType:ty,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// (*$Sample as f64 * ::std::$SampleTypeIdent::MAX as f64) as $SampleType
// };
// (f64,
// $SampleType:ty,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// (*$Sample as f64 * ::std::$SampleTypeIdent::MAX as f64) as $SampleType
// };
// ($AsioTypeIdent:ident,
// $SampleType:ty,
// $SampleTypeIdent:ident,
// $Sample:expr
// ) => {
// (*$Sample as i64 * ::std::$SampleTypeIdent::MAX as i64
// / ::std::$AsioTypeIdent::MAX as i64) as $SampleType
// };
// };
// // This creates gets the buffer and interleaves it.
// // It allows it to be done based on the sample type.
// macro_rules! try_callback {
// ($SampleFormat:ident,
// $SampleType:ty,
// $SampleTypeIdent:ident,
// $AsioType:ty,
// $AsioTypeIdent:ident,
// $Buffers:expr,
// $BuffersType:ty,
// $BuffersTypeIdent:ident,
// $Endianness:expr,
// $ConvertEndian:expr
// ) => {
// // For each channel write the asio buffer to
// // the cpal buffer
// for (i, channel) in $Buffers.channel.iter_mut().enumerate() { // TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// let buff_ptr = asio_stream.buffer_infos[i].buffers[index as usize] // trait for the `to_le` and `to_be` methods, but this does not support floats.
// as *mut $AsioType; (&sys::AsioSampleType::ASIOSTFloat32LSB, SampleFormat::F32) |
// let asio_buffer: &'static [$AsioType] = std::slice::from_raw_parts( (&sys::AsioSampleType::ASIOSTFloat32MSB, SampleFormat::F32) => {
// buff_ptr, process_input_callback::<f32, f32, _, _>(
// asio_stream.buffer_size as usize, stream_id,
// ); callback,
// for asio_s in asio_buffer.iter() { &mut interleaved,
// channel.push($ConvertEndian( asio_stream,
// convert_sample!( buffer_index as usize,
// $AsioTypeIdent, std::convert::identity::<f32>,
// $SampleType, std::convert::identity::<f32>,
// $SampleTypeIdent, );
// asio_s }
// ),
// $Endianness,
// ));
// }
// }
// // interleave all the channels // TODO: Add support for the following sample formats to CPAL and simplify the
// { // `process_output_callback` function above by removing the unnecessary sample
// let $BuffersTypeIdent { // conversion function.
// cpal: ref mut c_buffer, (&sys::AsioSampleType::ASIOSTInt32LSB, SampleFormat::I16) => {
// channel: ref mut channels, process_input_callback::<i32, i16, _, _>(
// } = $Buffers; stream_id,
// au::interleave(&channels, c_buffer); callback,
// // Clear the per channel buffers &mut interleaved,
// for c in channels.iter_mut() { asio_stream,
// c.clear(); buffer_index as usize,
// } from_le,
// } |s| (s >> 16) as i16,
);
}
(&sys::AsioSampleType::ASIOSTInt32MSB, SampleFormat::I16) => {
process_input_callback::<i32, i16, _, _>(
stream_id,
callback,
&mut interleaved,
asio_stream,
buffer_index as usize,
from_be,
|s| (s >> 16) as i16,
);
}
// TODO: Handle endianness conversion for floats? We currently use the `PrimInt`
// trait for the `to_le` and `to_be` methods, but this does not support floats.
(&sys::AsioSampleType::ASIOSTFloat64LSB, SampleFormat::F32) |
(&sys::AsioSampleType::ASIOSTFloat64MSB, SampleFormat::F32) => {
process_input_callback::<f64, f32, _, _>(
stream_id,
callback,
&mut interleaved,
asio_stream,
buffer_index as usize,
std::convert::identity::<f64>,
|s| s as f32,
);
}
// // Call the users callback with the buffer unsupported_format_pair => {
// callback( unreachable!("`build_input_stream` should have returned with unsupported \
// StreamId(count), format {:?}", unsupported_format_pair)
// Ok(StreamData::Input { }
// buffer: UnknownTypeInputBuffer::$SampleFormat(::InputBuffer { }
// buffer: &$Buffers.cpal, });
// }),
// }),
// );
// };
// };
// // Call the right buffer handler depending on types
// match stream_type {
// sys::AsioSampleType::ASIOSTInt32LSB => {
// try_callback!(
// I16,
// i16,
// i16,
// i32,
// i32,
// buffers.i16_buff,
// I16Buffer,
// I16Buffer,
// Endian::Little,
// convert_endian_from
// );
// }
// sys::AsioSampleType::ASIOSTInt16LSB => {
// try_callback!(
// I16,
// i16,
// i16,
// i16,
// i16,
// buffers.i16_buff,
// I16Buffer,
// I16Buffer,
// Endian::Little,
// convert_endian_from
// );
// }
// sys::AsioSampleType::ASIOSTInt32MSB => {
// try_callback!(
// I16,
// i16,
// i16,
// i32,
// i32,
// buffers.i16_buff,
// I16Buffer,
// I16Buffer,
// Endian::Big,
// convert_endian_from
// );
// }
// sys::AsioSampleType::ASIOSTInt16MSB => {
// try_callback!(
// I16,
// i16,
// i16,
// i16,
// i16,
// buffers.i16_buff,
// I16Buffer,
// I16Buffer,
// Endian::Big,
// convert_endian_from
// );
// }
// sys::AsioSampleType::ASIOSTFloat32LSB => {
// try_callback!(
// F32,
// f32,
// f32,
// f32,
// f32,
// buffers.f32_buff,
// F32Buffer,
// F32Buffer,
// Endian::Little,
// |a, _| a
// );
// }
// sys::AsioSampleType::ASIOSTFloat64LSB => {
// try_callback!(
// F32,
// f32,
// f32,
// f64,
// f64,
// buffers.f32_buff,
// F32Buffer,
// F32Buffer,
// Endian::Little,
// |a, _| a
// );
// }
// sys::AsioSampleType::ASIOSTFloat32MSB => {
// try_callback!(
// F32,
// f32,
// f32,
// f32,
// f32,
// buffers.f32_buff,
// F32Buffer,
// F32Buffer,
// Endian::Big,
// |a, _| a
// );
// }
// sys::AsioSampleType::ASIOSTFloat64MSB => {
// try_callback!(
// F32,
// f32,
// f32,
// f64,
// f64,
// buffers.f32_buff,
// F32Buffer,
// F32Buffer,
// Endian::Big,
// |a, _| a
// );
// }
// _ => println!("unsupported format {:?}", stream_type),
// }
// });
// // Create stream and set to paused
// self.cpal_streams
// .lock()
// .unwrap()
// .push(Some(Stream { driver: driver.clone(), playing: false }));
// Ok(StreamId(count)) // Create stream and set to paused
self.cpal_streams
.lock()
.unwrap()
.push(Some(Stream { driver: driver.clone(), playing: false }));
Ok(StreamId(count))
} }
/// Create the an output cpal stream. /// Create the an output cpal stream.
@ -551,7 +387,6 @@ impl EventLoop {
let num_channels = format.channels.clone(); let num_channels = format.channels.clone();
let stream_type = driver.data_type().map_err(build_stream_err)?; let stream_type = driver.data_type().map_err(build_stream_err)?;
let stream_buffer_size = self.get_output_stream(&driver, format, device)?; let stream_buffer_size = self.get_output_stream(&driver, format, device)?;
let channel_len = stream_buffer_size as usize;
let cpal_num_samples = stream_buffer_size * num_channels as usize; let cpal_num_samples = stream_buffer_size * num_channels as usize;
let count = self.stream_count.fetch_add(1, Ordering::SeqCst); let count = self.stream_count.fetch_add(1, Ordering::SeqCst);
let asio_streams = self.asio_streams.clone(); let asio_streams = self.asio_streams.clone();
@ -567,6 +402,7 @@ impl EventLoop {
sys::set_callback(move |buffer_index| unsafe { sys::set_callback(move |buffer_index| unsafe {
// If not playing, return early. // If not playing, return early.
// TODO: Don't assume `count` is valid - we should search for the matching `StreamId`.
if let Some(s) = cpal_streams.lock().unwrap().get(count) { if let Some(s) = cpal_streams.lock().unwrap().get(count) {
if let Some(s) = s { if let Some(s) = s {
if !s.playing { if !s.playing {
@ -790,6 +626,8 @@ impl EventLoop {
/// Destroy the cpal stream based on the ID. /// Destroy the cpal stream based on the ID.
pub fn destroy_stream(&self, stream_id: StreamId) { pub fn destroy_stream(&self, stream_id: StreamId) {
// TODO: Should we not also remove an ASIO stream here? // TODO: Should we not also remove an ASIO stream here?
// Yes, and we should update the logic in the callbacks to search for the stream with
// the matching ID, rather than assuming the index associated with the ID is valid.
let mut streams = self.cpal_streams.lock().unwrap(); let mut streams = self.cpal_streams.lock().unwrap();
streams.get_mut(stream_id.0).take(); streams.get_mut(stream_id.0).take();
} }
@ -838,12 +676,20 @@ impl Silence for f64 {
} }
impl InterleavedSample for i16 { impl InterleavedSample for i16 {
fn unknown_type_input_buffer(buffer: &[Self]) -> UnknownTypeInputBuffer {
UnknownTypeInputBuffer::I16(::InputBuffer { buffer })
}
fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer { fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer {
UnknownTypeOutputBuffer::I16(::OutputBuffer { buffer }) UnknownTypeOutputBuffer::I16(::OutputBuffer { buffer })
} }
} }
impl InterleavedSample for f32 { impl InterleavedSample for f32 {
fn unknown_type_input_buffer(buffer: &[Self]) -> UnknownTypeInputBuffer {
UnknownTypeInputBuffer::F32(::InputBuffer { buffer })
}
fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer { fn unknown_type_output_buffer(buffer: &mut [Self]) -> UnknownTypeOutputBuffer {
UnknownTypeOutputBuffer::F32(::OutputBuffer { buffer }) UnknownTypeOutputBuffer::F32(::OutputBuffer { buffer })
} }
@ -857,14 +703,6 @@ impl AsioSample for f32 {}
impl AsioSample for f64 {} impl AsioSample for f64 {}
/// Cast a byte slice into a (immutable) slice of desired type.
///
/// Safety: it's up to the caller to ensure that the input slice has valid bit representations.
unsafe fn cast_slice<T>(v: &[u8]) -> &[T] {
debug_assert!(v.len() % std::mem::size_of::<T>() == 0);
std::slice::from_raw_parts(v.as_ptr() as *const T, v.len() / std::mem::size_of::<T>())
}
/// Cast a byte slice into a mutable slice of desired type. /// Cast a byte slice into a mutable slice of desired type.
/// ///
/// Safety: it's up to the caller to ensure that the input slice has valid bit representations. /// Safety: it's up to the caller to ensure that the input slice has valid bit representations.
@ -873,21 +711,42 @@ unsafe fn cast_slice_mut<T>(v: &mut [u8]) -> &mut [T] {
std::slice::from_raw_parts_mut(v.as_mut_ptr() as *mut T, v.len() / std::mem::size_of::<T>()) std::slice::from_raw_parts_mut(v.as_mut_ptr() as *mut T, v.len() / std::mem::size_of::<T>())
} }
/// Helper function to convert to system endianness /// Helper function to convert to little endianness.
fn to_le<T: PrimInt>(t: T) -> T { fn to_le<T: PrimInt>(t: T) -> T {
t.to_le() t.to_le()
} }
/// Helper function to convert from system endianness /// Helper function to convert to big endianness.
fn to_be<T: PrimInt>(t: T) -> T { fn to_be<T: PrimInt>(t: T) -> T {
t.to_be() t.to_be()
} }
/// Helper function to convert from little endianness.
fn from_le<T: PrimInt>(t: T) -> T {
T::from_le(t)
}
/// Helper function to convert from little endianness.
fn from_be<T: PrimInt>(t: T) -> T {
T::from_be(t)
}
/// Shorthand for retrieving the asio buffer slice associated with a channel. /// Shorthand for retrieving the asio buffer slice associated with a channel.
/// ///
/// Safety: it's up to the user to ensure the slice is not used beyond the lifetime of /// Safety: it's up to the user to ensure that this function is not called multiple times for the
/// the stream and that this function is not called multiple times for the same /// same channel.
/// channel. unsafe fn asio_channel_slice<T>(
asio_stream: &sys::AsioStream,
buffer_index: usize,
channel_index: usize,
) -> &[T] {
asio_channel_slice_mut(asio_stream, buffer_index, channel_index)
}
/// Shorthand for retrieving the asio buffer slice associated with a channel.
///
/// Safety: it's up to the user to ensure that this function is not called multiple times for the
/// same channel.
unsafe fn asio_channel_slice_mut<T>( unsafe fn asio_channel_slice_mut<T>(
asio_stream: &sys::AsioStream, asio_stream: &sys::AsioStream,
buffer_index: usize, buffer_index: usize,
@ -900,14 +759,6 @@ unsafe fn asio_channel_slice_mut<T>(
std::slice::from_raw_parts_mut(buff_ptr, asio_stream.buffer_size as usize) std::slice::from_raw_parts_mut(buff_ptr, asio_stream.buffer_size as usize)
} }
/// Helper function to convert from system endianness
fn convert_endian_from<T: PrimInt>(sample: T, endian: Endian) -> T {
match endian {
Endian::Big => T::from_be(sample),
Endian::Little => T::from_le(sample),
}
}
fn build_stream_err(e: sys::AsioError) -> BuildStreamError { fn build_stream_err(e: sys::AsioError) -> BuildStreamError {
match e { match e {
sys::AsioError::NoDrivers | sys::AsioError::NoDrivers |