cpal/examples/beep.rs

63 lines
1.8 KiB
Rust
Raw Permalink Normal View History

extern crate anyhow;
2014-12-11 15:28:26 +00:00
extern crate cpal;
2016-09-30 16:18:28 +00:00
use cpal::traits::{DeviceTrait, HostTrait, StreamTrait};
[WIP] Introduce a `Host` API This is an implementation of the API described at #204. Please see that issue for more details on the motivation. ----- A **Host** provides access to the available audio devices on the system. Some platforms have more than one host available, e.g. wasapi/asio/dsound on windows, alsa/pulse/jack on linux and so on. As a result, some audio devices are only available on certain hosts, while others are only available on other hosts. Every platform supported by CPAL has at least one **DefaultHost** that is guaranteed to be available (alsa, wasapi and coreaudio). Currently, the default hosts are the only hosts supported by CPAL, however this will change as of landing #221 (cc @freesig). These changes should also accommodate support for other hosts such as jack #250 (cc @derekdreery) and pulseaudio (cc @knappador) #259. This introduces a suite of traits allowing for both compile time and runtime dispatch of different hosts and their uniquely associated device and event loop types. A new private **host** module has been added containing the individual host implementations, each in their own submodule gated to the platforms on which they are available. A new **platform** module has been added containing platform-specific items, including a dynamically dispatched host type that allows for easily switching between hosts at runtime. The **ALL_HOSTS** slice contains a **HostId** for each host supported on the current platform. The **available_hosts** function produces a **HostId** for each host that is currently *available* on the platform. The **host_from_id** function allows for initialising a host from its associated ID, failing with a **HostUnavailable** error. The **default_host** function returns the default host and should never fail. Please see the examples for a demonstration of the change in usage. For the most part, things look the same at the surface level, however the role of device enumeration and creating the event loop have been moved from global functions to host methods. The enumerate.rs example has been updated to enumerate all devices for each host, not just the default. **TODO** - [x] Add the new **Host** API - [x] Update examples for the new API. - [x] ALSA host - [ ] WASAPI host - [ ] CoreAudio host - [ ] Emscripten host **Follow-up PR** - [ ] ASIO host #221 cc @ishitatsuyuki more to review for you if you're interested, but it might be easier after #288 lands and this gets rebased.
2019-06-23 13:49:48 +00:00
fn main() -> Result<(), anyhow::Error> {
[WIP] Introduce a `Host` API This is an implementation of the API described at #204. Please see that issue for more details on the motivation. ----- A **Host** provides access to the available audio devices on the system. Some platforms have more than one host available, e.g. wasapi/asio/dsound on windows, alsa/pulse/jack on linux and so on. As a result, some audio devices are only available on certain hosts, while others are only available on other hosts. Every platform supported by CPAL has at least one **DefaultHost** that is guaranteed to be available (alsa, wasapi and coreaudio). Currently, the default hosts are the only hosts supported by CPAL, however this will change as of landing #221 (cc @freesig). These changes should also accommodate support for other hosts such as jack #250 (cc @derekdreery) and pulseaudio (cc @knappador) #259. This introduces a suite of traits allowing for both compile time and runtime dispatch of different hosts and their uniquely associated device and event loop types. A new private **host** module has been added containing the individual host implementations, each in their own submodule gated to the platforms on which they are available. A new **platform** module has been added containing platform-specific items, including a dynamically dispatched host type that allows for easily switching between hosts at runtime. The **ALL_HOSTS** slice contains a **HostId** for each host supported on the current platform. The **available_hosts** function produces a **HostId** for each host that is currently *available* on the platform. The **host_from_id** function allows for initialising a host from its associated ID, failing with a **HostUnavailable** error. The **default_host** function returns the default host and should never fail. Please see the examples for a demonstration of the change in usage. For the most part, things look the same at the surface level, however the role of device enumeration and creating the event loop have been moved from global functions to host methods. The enumerate.rs example has been updated to enumerate all devices for each host, not just the default. **TODO** - [x] Add the new **Host** API - [x] Update examples for the new API. - [x] ALSA host - [ ] WASAPI host - [ ] CoreAudio host - [ ] Emscripten host **Follow-up PR** - [ ] ASIO host #221 cc @ishitatsuyuki more to review for you if you're interested, but it might be easier after #288 lands and this gets rebased.
2019-06-23 13:49:48 +00:00
let host = cpal::default_host();
let device = host
.default_output_device()
.expect("failed to find a default output device");
let config = device.default_output_config()?;
match config.sample_format() {
cpal::SampleFormat::F32 => run::<f32>(&device, &config.into())?,
cpal::SampleFormat::I16 => run::<i16>(&device, &config.into())?,
cpal::SampleFormat::U16 => run::<u16>(&device, &config.into())?,
}
Ok(())
}
fn run<T>(device: &cpal::Device, config: &cpal::StreamConfig) -> Result<(), anyhow::Error>
where
T: cpal::Sample,
{
let sample_rate = config.sample_rate.0 as f32;
let channels = config.channels as usize;
// Produce a sinusoid of maximum amplitude.
let mut sample_clock = 0f32;
let mut next_value = move || {
sample_clock = (sample_clock + 1.0) % sample_rate;
(sample_clock * 440.0 * 2.0 * 3.141592 / sample_rate).sin()
};
let err_fn = |err| eprintln!("an error occurred on stream: {}", err);
let stream = device.build_output_stream(
config,
move |data: &mut [T], _: &cpal::OutputCallbackInfo| {
write_data(data, channels, &mut next_value)
},
err_fn,
)?;
stream.play()?;
std::thread::sleep(std::time::Duration::from_millis(1000));
Ok(())
2014-12-11 15:28:26 +00:00
}
fn write_data<T>(output: &mut [T], channels: usize, next_sample: &mut dyn FnMut() -> f32)
where
T: cpal::Sample,
{
for frame in output.chunks_mut(channels) {
let value: T = cpal::Sample::from::<f32>(&next_sample());
for sample in frame.iter_mut() {
*sample = value;
}
}
}